Sandstorms in the Southwest US: An Exploratory Study to Implement a Predictive Model

Lexi Cole Prof. Splitt, Dr. Lazarus, Dr. Nezamoddin N. Kachouie

ntrocuction

Sand and Dust Storms

- Meteorological phenomena that occur in arid or semi-arid regions of the world
- Defined by the particle size
 - Sand storm: Particles >= 60 µm
 - **Dust storm**: Particles < 60 μm
- Dust storms are very prominent in the Southwest U.S.
 - **Dust storms**: Result of turbulent winds raising large quantities of dust into the air and reducing visibility below 1000m
 - Blowing dust: Raised by winds to moderate heights above the ground and reducing visibility at eye level but not to less than 1000m

What Causes Dust Storms?

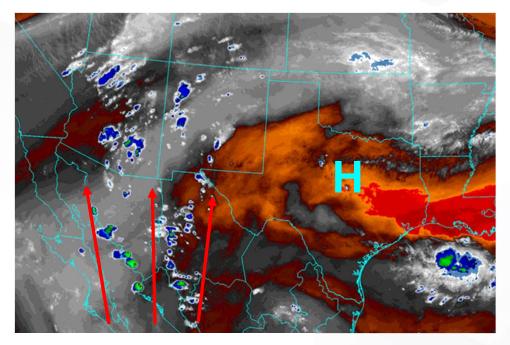

- There are several meteorological, topographic, and hydrological factors known to have impacts on dust storms in the Southwest

Table 2.2. Some key physical factors influencing wind erosion. *Symbols in parentheses:* + wind erosion becomes weaker; – erosion becomes greater as factor increases. Modified from Shi et al. (2004)

Climate	Soil	Vegetation	Landform
Wind speed (-)	Soil type	Туре	Surface roughness
Wind direction	Particle composition	Coverage (+)	Slope (+)
Turbulence (–)	Soil structure		Ridge
Precipitation (+)	Organic matter (+)		
Evaporation (-)	Calcium carbonate (+)		
Air temperature (+)	Bulk density		
Air pressure (–)	Soil aggregation (+)		
Freeze-thaw action (+)	Soil water (+)		

Monsoonaly Generated Dust Storms

Gulf of California moisture

- North American Summer Monsoon
 - Forms from uneven heating of the land vs. the surrounding ocean
 - Develops in Mexico in June, then impacts the southwestern United States in July through September
 - High pressure over the Southwest paired with southerly winds bring moisture from the Gulf of California and the Pacific Ocean into the region
 - This moisture increase and surface heating generate strong monsoonal thunderstorms

Monsoonaly Generated Dust Storms

- When these monsoonal thunderstorms develop in the summer months, they generate intense downward outflows
- When these outflows reach the ground, they travel horizontally outward as a gust front, which can pick up dust and other loose sediment, forming dust storms
- Monsoonal dust storms (also called haboobs) account for the majority of the events in the Southwest

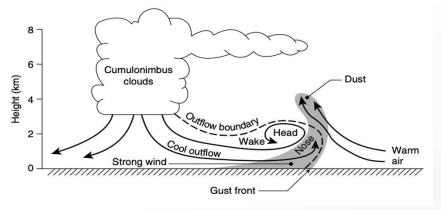
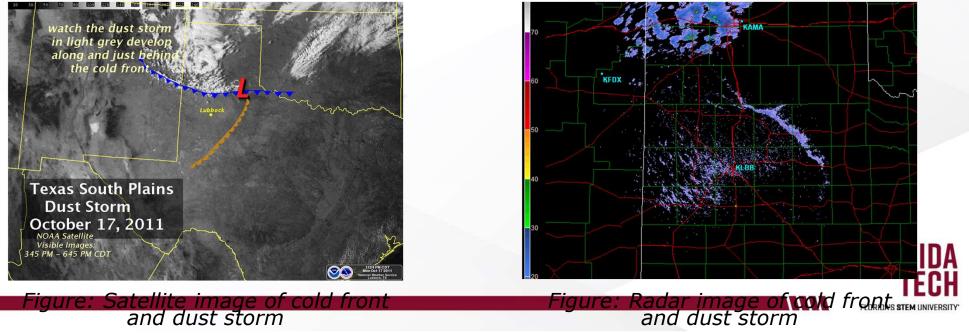



Figure: Diagram of monsoonal thunderstorm outflow causing a dust storm

Synoptically Generated Dust Storms

- These storms are prevalent outside of the monsoon season, but occur less often
- These occur when surface fronts or strong low pressure systems move across the Southwest and loft dust upwards due to strong winds

Purpose of Study

Dust storms have many damaging impacts:

- Human health: Decreased air quality from dust can irritate lung tissue, trigger allergic reactions, and cause asthma attacks
- Aviation: Limited visibility and engine clogging
- Weather and climate: Cloud condensation nuclei increase
- Environment: Crop yield reduction, reduced photosynthesis in plants, increased erosion
- Society: Decreased visibility while driving and diversion of solar radiation from solar panels

Future Issues

Research Setting

- This project focuses on three states: Arizona, New Mexico, and Nevada
 - Arid or semi-arid climate
 - Mountains and valleys for thunderstorm formation
- Focus on nine airport stations in the region
 - Many stations in each state have Automatic Surface Observing Systems (ASOS)
 - Special selection for this project based on presence of SYNOP (surface synoptic) reports
 - SYNOP reports are taken manually every 6 hours and provide a human observer's report of past and present weather conditions

Typical Wet Monsoon Thunderstorm

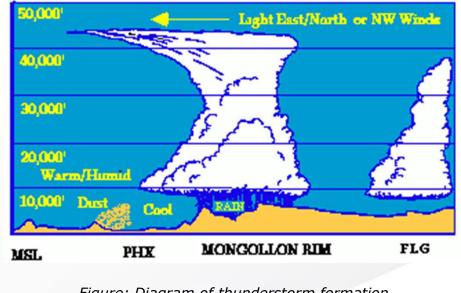
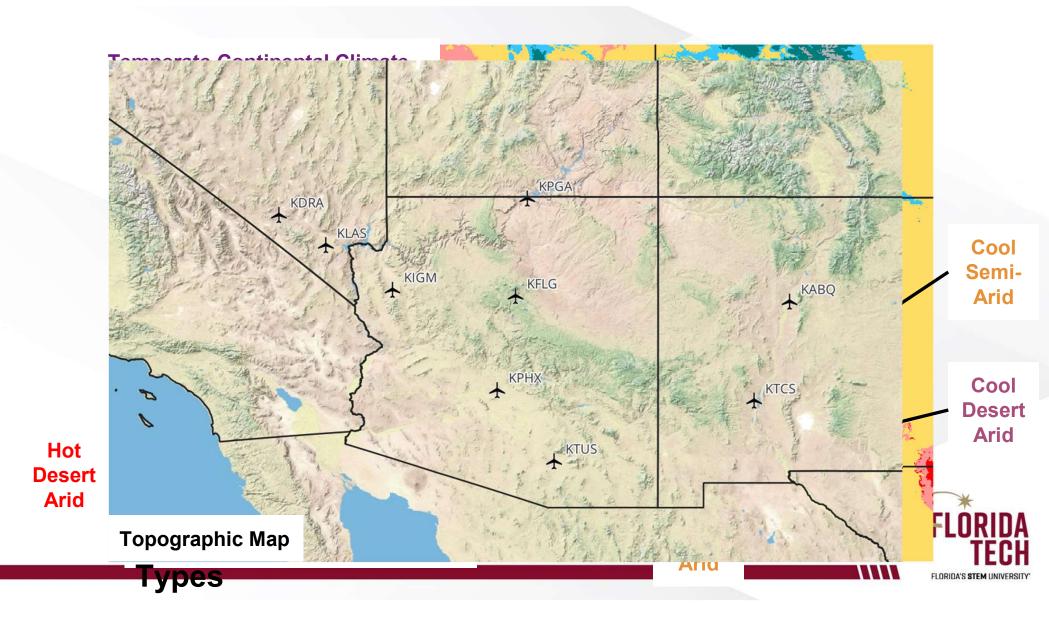



Figure: Diagram of thunderstorm formation over mountain and dust storm generation in valley

Dataset	Variables	Time Span	Time Scale	Spatial Resolution
Integrated Surface Dataset (ISD)	Sand or dust reports from manual and automated observations	1948-2022	Monthly averaged	Observation station dependent
ERA5	U wind, V wind, precipitation, evaporation, temperature, CAPE, Total Totals, water vapor	1948-2022	Monthly averaged	30 km
TerraClimate	Evapotranspiration, runoff, climate water deficit, soil moisture, palmer drought severity index, max and min temperature	1958-2022	Monthly averaged	4 km
North American Summer Monsoon Index	Index describing the North American Summer Monsoon	1948-2022	Monthly averaged only in JAS	Spans over 17.5 - 35° N to 100 - 120° W
SPEI Database	Drought Index	1901-2021	Monthly averaged	0.5 x 0.5 TEC

Procedures

- Evaluate univariate relationships between variables and ISD dust data
- Utilize neg. Binom regression to

Analysis

Limitations of the Model

CONCUSIONS

Works Cited

National Weather Service, N. (2016, September 26). NWS Lubbock, TX, October 17th haboob—Severe winds and

blowing dust. https://www.weather.gov/lub/events-2011-20111017-haboob

National Weather Service, N. (2018, September 14). North American Monsoon highlights.

https://www.weather.gov/abq/northamericanmonsoon-intro

Lit Review: Desert Dust in the Global System

World Meteorological Organization definitions

- Dust storms Result of turbulent winds raising large quantities of dust into the air and reducing visibility below 1000m
- Blowing dust Raised by winds to moderate heights above the ground and reducing visibility at eye level but not to less than 1000m
- Dust haze Produced by dust particles in suspended transport which have been raised from the ground by a dust storm prior to the time of observation
- Sand storms vs. dust storms
 - Sand storms: low altitude phenomena of limited area composed of sand sized materials
 - Dust storms: higher altit distances and are primar

(Goudie and Middleton, 2006)

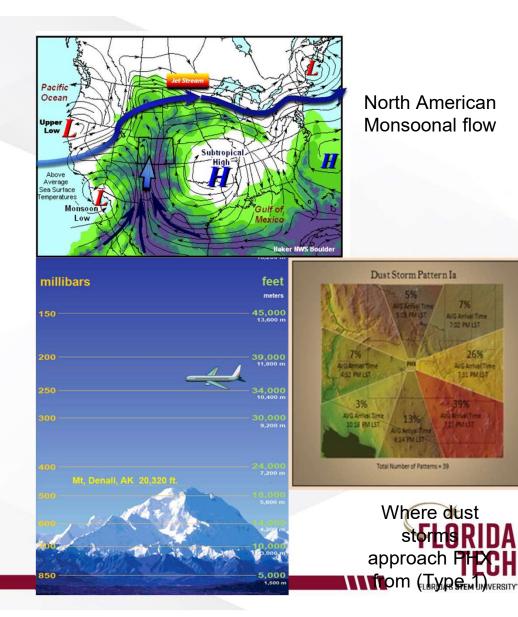
Lit Review: Desert Dust in the Global System

- Entrainment
 - In the U.S. southwest, the threshold velocities for dust entrainment range from 5.1 m/s to 16.0 m/s (~10 kt to 31 kt) depending on the surface type
 - Increased surface roughness can increase the threshold velocity needed to loft sand or dust, but also leads to higher wind friction and therefore increased emissions
 - Degree of cover by non-erodible elements (rock or vegetation)
 - Moisture content (P-E)

(Goudie and Middleton, 2006)

Table 2.1. Wind threshold values for type surfaces in the United States South-West (after Clements et al. 1963; Nickling and Gillies 1989). From Brazel (1991)

Surface type	Threshold speed (m s^{-1})	
Mine tailings	5.1	
River channel	6.7	
Abandoned land	7.8	
Desert pavement, partly formed	8.0	
Disturbed desert	8.1	
Alluvial fan, loose	9.0	
Dry wash	10.0	
Desert flat, partly vegetated	11.0	
Scrub desert	11.3	
Playa (dry lake), undisturbed	15.0	
Agriculture	15.6	
Alluvial fan, crusted	16.0	
Desert pavement, mature	>16.0	

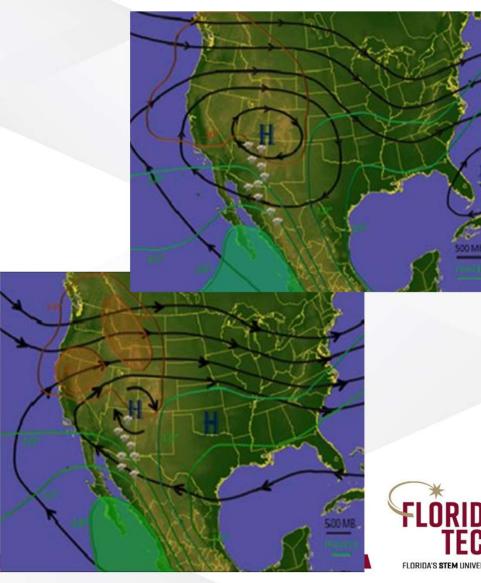

Table 2.2. Some key physical factors influencing wind erosion. *Symbols in parentheses:* + wind erosion becomes weaker; – erosion becomes greater as factor increases. Modified from Shi et al. (2004)

Climate	Soil	Vegetation	Landform
Wind speed (–)	Soil type	Туре	Surface roughness
Wind direction	Particle composition	Coverage (+)	Slope (+)
Turbulence (–)	Soil structure		Ridge
Precipitation (+)	Organic matter (+)		
Evaporation (-)	Calcium carbonate (+)		
Air temperature (+)	Bulk density		
Air pressure (–)	Soil aggregation (+)		
Freeze-thaw action (+)	Soil water (+)		

FLORIDA'S STEM UNIVERSITY

Key Takeaways From Synoptic Setups

- Can we find links between winds from the east or from the south and dust storm events in the Southwest?
 - Based on the synoptic maps, we expect an easterly flow to initiate haboobs
 - Based on the North American Monsoon, we expect a southerly flow to bring moisture into the region
- At what levels in the atmosphere do these flows influence dust storm frequency?

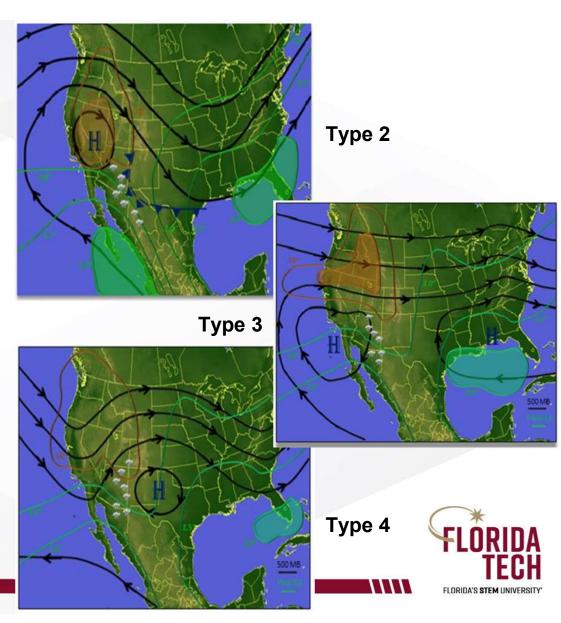

7%

VG Arrival Tim 07 04415

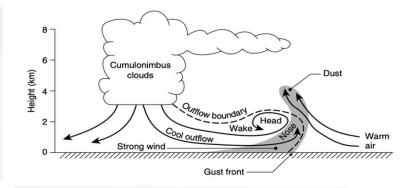
26%

Synoptic Scale Patterns for Sandstorms

- Type 1: characterized by a large area of 500 mb high pressure over the southern and central United States
- "Four corners high" due to the location of the high pressure over the AZ-NM-UT-CO border
- Accounts for the formation about 50% of dust storms in Phoenix, AZ
- Results in dust storms that often approach from the Southeast (~35%)



(NOAA, 2016)


Synoptic Scale Sandstorm Patterns

- These additional three patterns account for about 45% of sandstorms in the Southwest
- Type 2: high pressure over the Great Basin and trough over the Eastern U.S.
- Type 3: two distinct cells of high pressure in the south, sometimes accompanies by a low between highs
- Type 4: high pressure over the southern plains and a sharp trough axis over the west coast

(NOAA, 2016)

Lit Review: Desert Dust in the Global System

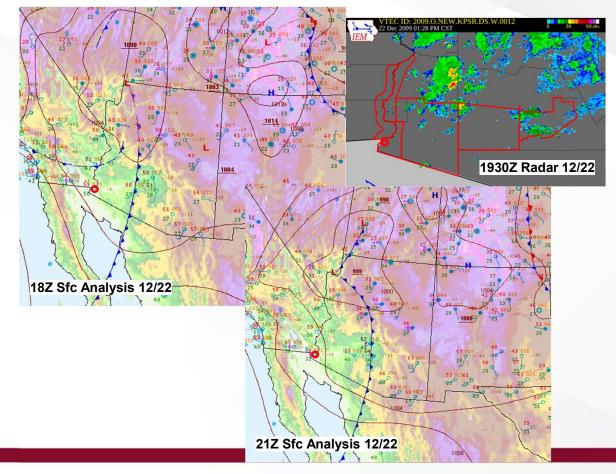
- Transport
 - Passage of low pressure fronts (strong baroclinic gradients)
 - Surface cyclones if intense circulation
 - Outflow propagation and gust front generation
- Deposition
 - Gravitational settling (dry deposition)
- Precipitation (wet deposition) ** In Texas, Saharan events with moderate to high fine

** In Texas, Saharan events with moderate to high fine particulate contents occur on three to six days in the year, last for one to three days and travel from their source in 10-14 days. Not a huge concern in AZ, NM, and CA due to the terrain of the Southwest.

(Goudie and Middleton, 2006)

Yuma, AZ - Synoptic Dust Storm

2009-12-22T19:28:00Z


34740 Southwest Deserts [AZ], Northwest and North Central Pinal County [AZ], Yuma/Martinez Lake and Vicinity [AZ], Southwest Maricopa County [AZ], Lower Colorado River Valley AZ [AZ],

KNYL - Yuma, AZ -	Synoptic Event					
	12/22/09	12/22/09	12/22/09	12/22/09	12/23/09	
	20 UTC	21 UTC	22 UTC	23 UTC	00 UTC	
	13 MST	14 MST	15 MST	16 MST	17 MST	AVERAGE
Wind Direction	290	280	280	280	290	284
Wind Speed (kts)	19	22	15	9	16	16.2
Pk Wind Gust (kts)	27	28	26	18	20	23.8

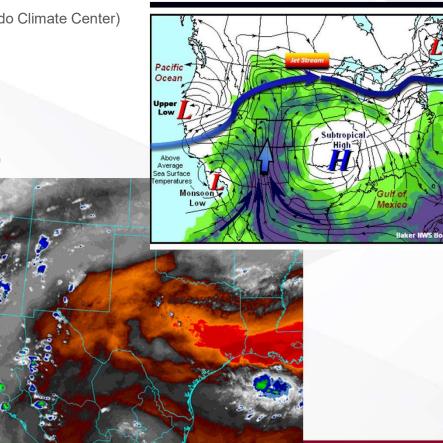
KNYL 222051Z 29019G27KT 6SM BLDU HZ SCT050 BKN120 18/00 A2968 RMK AO2 PK WND 28035/2003 SLP051 T01780000 58019 KNYL 222151Z 28022G28KT 8SM DU HZ SCT050 BKN120 17/M02 A2968 RMK AO2 PK WND 27029/2126 SLP051 T01721017 KNYL 222251Z 28015G26KT 10SM DU HZ CLR 17/M01 A2968 RMK AO2 PK WND 28030/2156 SLP050 T01721011 KNYL 222351Z 28009G18KT 10SM CLR 16/01 A2969 RMK AO2 PK WND 29027/2325 SLP054 T01610011 10183 20150 53003 KNYL 230051Z 29016G20KT 10SM CLR 14/01 A2970 RMK AO2 SLP056 T01440006

Yuma, AZ - Synoptic Dust Storm

AREA FORECAST DISCUSSION NATIONAL WEATHER SERVICE PHOENIX AZ 302 PM MST TUE DEC 22 2009

.SYNOPSIS...

A STRONG LOW PRESSURE SYSTEM AND ASSOCIATED COLD FRONT WILL BRING COLDER AND BREEZY TO WINDY WEATHER INTO THE REGION THIS EVENING...WITH THE <u>STRONGEST</u> <u>WINDS</u> EXPECTED IN SOUTHEAST CALIFORNIA AND <u>SOUTHWEST ARIZONA PRODUCING AREAS OF</u> BLOWING DUST.


THE STRONG GUSTY WINDS HAVE RESULTED IN AREAS OF BLOWING DUST ACROSS OUR SOUTHERN ZONES. A **WIND ADVISORY** AND DUST STORM WARNING ARE IN EFFECT FOR PORTIONS OF THE PHOENIX FORECAST AREA THROUGH THIS EVENING.

North American Summer Monsoon

(Colorado Climate Center)

- Forms due to uneven heating of the land vs. the surrounding ocean
- Begins to develop in Mexico in June, then impacts the southwestern United States in July through September
- High pressure over the Southwest paired with southerly winds bring moisture from the Gulf of California and the Pacific Ocean into the region
- This moisture increase paired with heat from the surface generates monsoonal thunderstorms that bring isolated heavy rain

FLORIDA'S STEM UNIVERSI

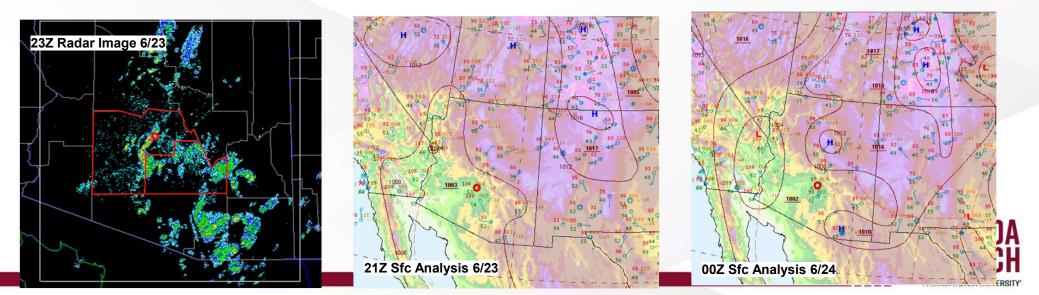
Phoenix, AZ - Monsoonal Dust Storm

2022-06-23T21:39:00Z	3150 Maricopa [AZ], Pinal [AZ]	Monsoon
2022-06-23T22:06:00Z	2179 Maricopa [AZ], Pinal [AZ]	Monsoon
2022-06-23T23:14:00Z	2136 Maricopa [AZ], Pinal [AZ]	Monsoon
2022-06-23T23:43:00Z	3760 Maricopa [AZ]	Monsoon

KPHX 232151Z 13005KT 10SM FEW040 FEW060 SCT120 SCT220 SCT270 41/12 A2970 RMK A02 LTG DSNT S SLP033 CB DSNT E-S-SW SHRA DSNT SE-SW T04110117

KPHX 232251Z 18016G28KT 5SM VCTS BLDU FEW040 SCT060CB SCT120 BKN160 BKN190 BKN250 39/09 A2968 RMK AO2 PK WND 19028/2248 LTG DSNT SE-SW SLP029 CB VC W MOV NE CB DSNT E-S-SW SHRA SE-E BLDU VC E-SW T03890094

,KPHX 232358Z 17012G23KT 120V200 2SM -TSRA BLDU SCT019 BKN090CB BKN110 BKN190 29/17 A2977 RMK AO2 OCNL LTGIC ALQDS TS ALQGS MOV NE P0000 T02940172


	6/23/22	6/23/22	6/23/22	
	21 UTC	22 UTC	23 UTC	
	14 MST	15 MST	16 MST	AVERAGE
Wind Direction	130	180	170	160
Wind Speed (kts)	5	16	14	11.66666667
Pk Wind Gust (kts)		28	34	31

Phoenix, AZ - Monsoonal Dust Storm

<u>Monsoonal moisture</u> will continue to promote daily opportunities for shower and thunderstorm activity during the next several days. Today, the highest coverage of storms will be across the northern and eastern half of Arizona, including portions of the Phoenix metro. **Strong to severe thunderstorm wind gusts**, **blowing dust**, **heavy rain**, **and lightning** will be the main weather risks in these areas.

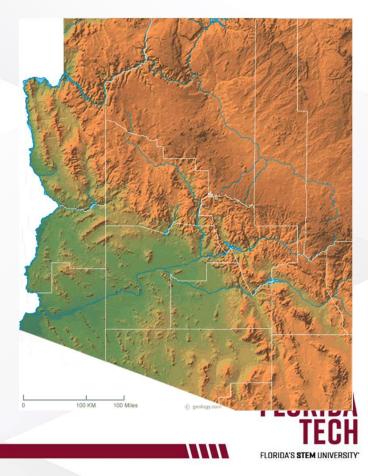
HREF has greater than a 70% chance of seeing winds of 35 mph or greater across much of these areas, including the Phoenix area and the dust corridor on 1-10 between Tucson and Phoenix. Therefore, blowing dust/dust storms will also be a concern today across Maricopa and Pinal counties. In addition, the HREF max 4 hr wind speed is showing the potential for some downbursts to produce 50-60 kts winds.

The North American Monsoon

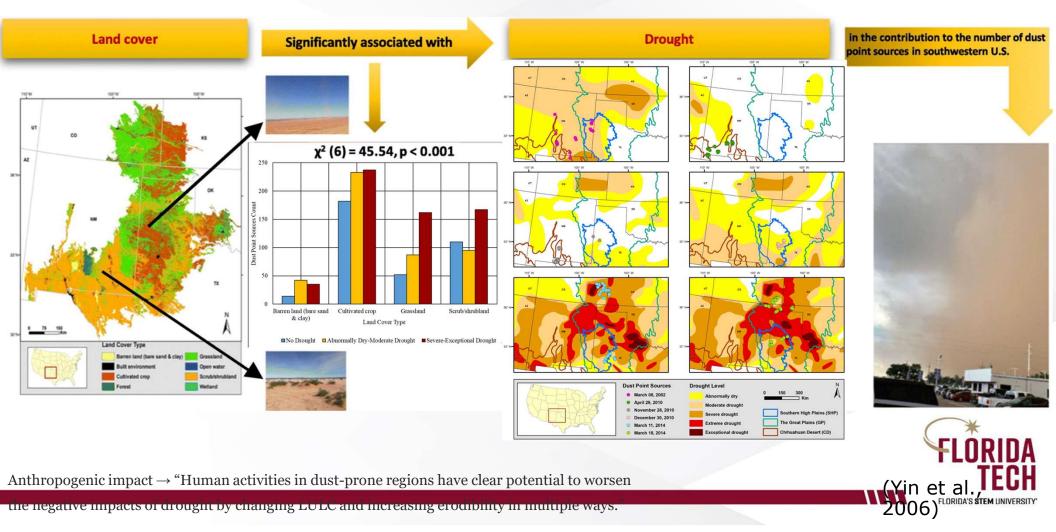
- Regional variability
 - Great variability of precipitation in the Southwestern U.S.
 - Mountainous regions in central Arizona experience greater amounts of rainfall during the monsoon season than the desert southwest.
- Localized variability
 - In Arizona, only small to moderate interstation correlations exist between rainfall events due to the isolated nature of the monsoonal thunderstorms
 - Maximum in convective activity:
 - Colorado Plateau early afternoon
 - Highlands of southern AZ and northern Sonora early evening

Lower desert regions of southern and central AZ - late evening and

The North American Monsoon and Global Warming


- Global monsoon rainfall is projected to increase due to global warming and an increase in water vapor capacity
 - The Asian and North African monsoon rainfall totals are projected to increase
 - The North American Monsoon rainfall total is projected to be uncertain or even decrease
- Sea surface temperatures over the equatorial Pacific are increasing, resulting in a smaller sea-land temperature gradient, thus weakening the NAM
- These findings apply mainly to the Central-American region of the NAM, but could ultimately influence the strength of the NAM over time in the Southwestern U.S. TECH

Factors to Consider


There are many known factors that contribute to dust storm formation in the southwestern United States

- Land use/land cover
- Soil moisture
- Wind
- Precipitation

** Wind and precipitation vary on an annual scale due to the summer monsoon that impacts the Southwest.
** We must carefully move forward by separating monsoonal events from synoptic events

Lit review: land use/land cover

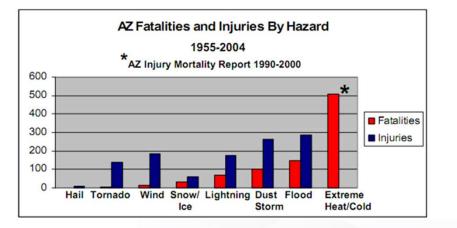
Lit review: Impacts of wind, precipitation, vegetation, and soil moisture on dust storm frequency in Northern China (Kandakji et al.,

2005)

- Spring dust storm frequency (DSF):
 - Positively correlated with upwind wind speed
 - Negatively correlated with
 - Amount of rainfall and moisture in the soil (during previous summer and the whole year)
 - Spring vegetation condition
 - Primary factor influencing spring DSF = amount of rainfall during previous summer near China-Mongolia border
 - as this rain impacts soil moisture during the summer, influencing vegetation health in the for point of the spring

Research Problem

Dust storms loft large amounts of sand and dust into the atmosphere in the Southwest United States.



- Human health: Decreased air quality from dust can irritate lung tissue, trigger allergic reactions, and cause asthma attacks
- Aviation: Limited visibility and engine clogging
- Weather and climate: Cloud condensation nuclei increase
- Environment: Crop yield reduction, reduced photosynthesis in plants, increased erosion
- Society: Decreased visibility while driving and diversion of solar radiation from solar panel

Why Do We Care?

Arizona Deaths and Injuries

by Hazardous Weather Type

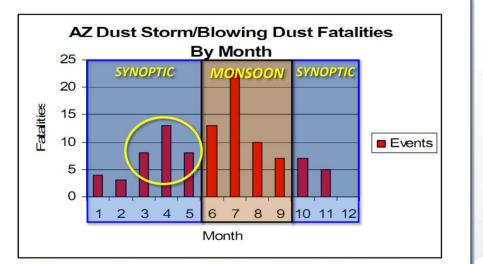
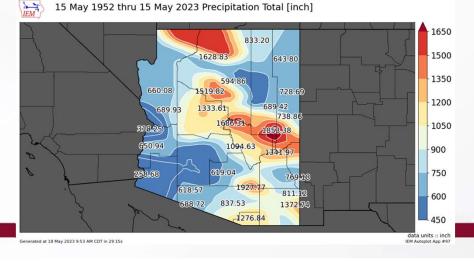
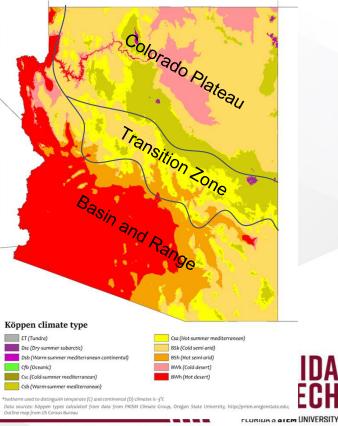


Figure 25. Frequency of dust storm fatalities by month from 1955 to 2004

Climate Zones in the Southwestern U.S.

(Peterson, 2016)

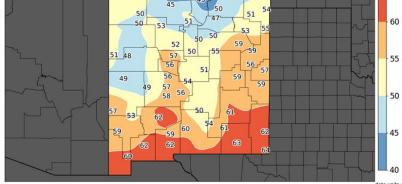

IFM 15 May 1952 thru 15 May 2023 Average Temperature [F]


- Generally, Arizona's climate is considered arid or semi-arid
- Plateau: Elevation upwards of 8,000 ft
- Transition Zone: Rugged mountains
- Basin and Range: Lowland deserts

Generated at 16 May 2023 4:03 PM CDT in 26:64s

(Iowa Environmental Mesonet of Iowa State University)

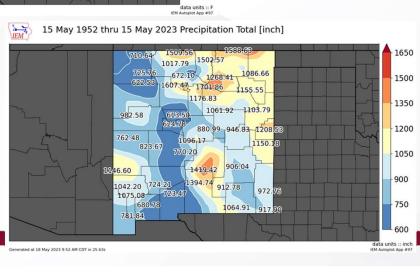
Köppen climate types of Arizona

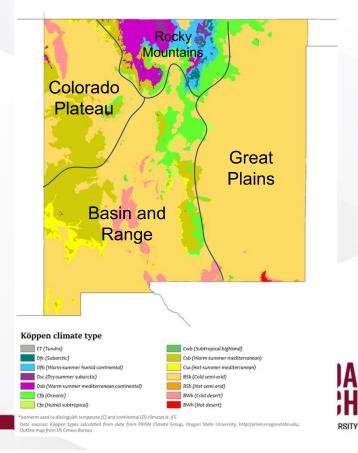

Climate Zones in the Southwestern U.S.

65

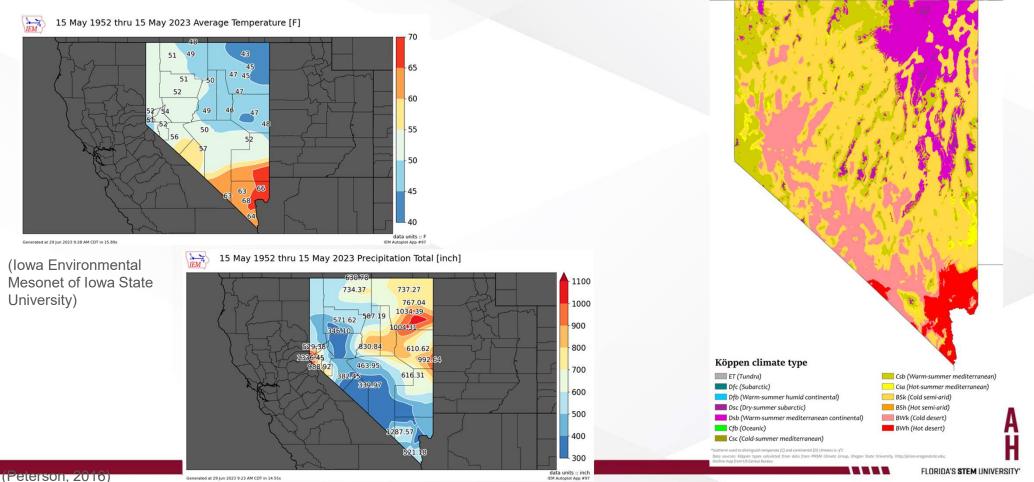
60

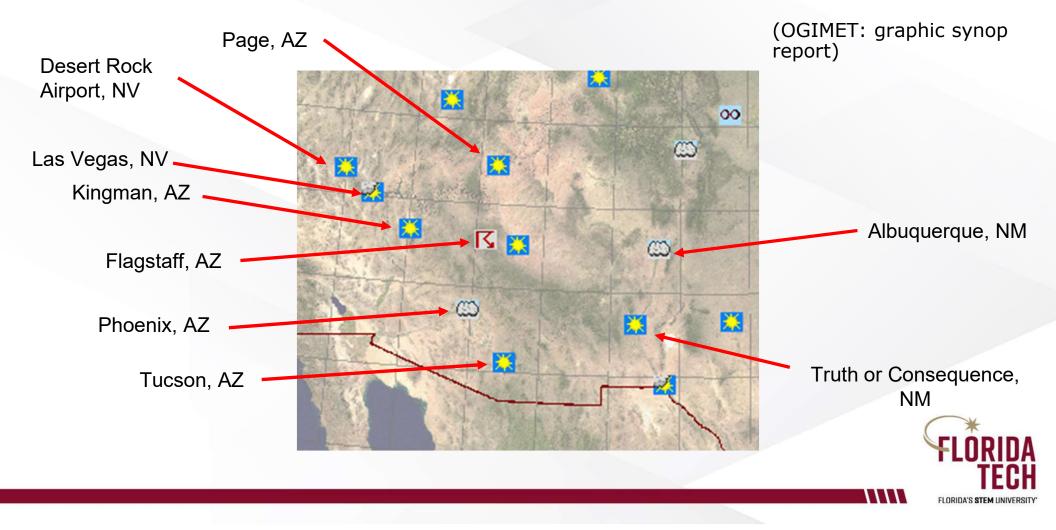
(Peterson, 2016)


15 May 1952 thru 15 May 2023 Average Temperature [F]


- -Mountains in the
- northwestern part of the state
- Lowlands in the southeastern part of the state
- -Basin and Range
- continues into southern AZ

Generated at 16 May 2023 4:12 PM CDT in 27.24s


(Iowa Environmental Mesonet of Iowa State University)


Köppen climate types of New Mexico

Climate Zones in the Southwestern U.S Köppen climate types of Nevada

OGIMET Synoptic Report: Locations in the Southwest US

Current Datasets:

- Standardized Precipitation Evapotranspiration Index (SPEI)
- Iowa Environmental Mesonet Dust Storm Warning Data
- Web-based Reanalysis Intercomparison Tools (WRIT)
- Integrated Surface Dataset (ISD)
 - METARS
 - SYNOPS

Standardized Precipitation Evapotranspiration lines (SPEI)

- Multiscalar index used to quantify drought
- Based on a climate water balance
 - Calculated using the monthly difference between precipitation and potential evapotranspiration (PET).

Categories	SPEI Values	imatic water balance which
Extreme drought	Less than -2.00	ne scales to obtain the SPEI
Severe drought	-1.99 to -1.50	ths
Moderate drought	-1.49 to -1.00	CI IS
Near normal	-0.99 to 0.99	
Moderately wet	1.00 to 1.49	
Severely wet	1.50 to 1.99	
Extremely wet	More than 2.00	

North American Summer Monsoon Index (NASMI)

- Data spans from 1948 through 2022
- Quantifies the strength of the summer monsoon and provides both raw and normalized values for July, August, and September

	Index	Year	RawJul	RawAug	RawSep	RawJAS	NormJul	NormAug	NormSep	NormJAS
 Averaged values 	0	1948	2.63	2.52	2.779	2.643	-0.418	-0.515	0.881	0.154
	1	1949	2.374	2.704	2.393	2.491	-1.143	-0.045	0.184	-0.355
	2	1950	2.466	2.921	1.841	2.409	-0.883	0.505	-0.815	-0.627
This is the dataset currently	3	1951	2.684	2.372	3.191	2.749	-0.262	-0.89	1.625	0.509
being worked with. Future	4	1952	3.211	2.893	3.067	3.057	1.232	0.434	1.401	1.536
0	5	1953	2.827	2.466	2.643	2.645	0.143	-0.652	0.635	0.162
plans are presented in later	6	1954	3.239	2.459	2.936	2.878	1.313	-0.67	1.165	0.939
slides.	7	1955	2.207	2.51	2.515	2.411	-1.618	-0.539	0.404	-0.621
	8	1956	3.049	2.888	3.751	3.229	0.772	0.421	2.637	2.112
	9	1957	2.462	2.436	1.849	2.249	-0.894	-0.727	-0.8	-1.162
	10	1958	2.844	2.404	1.763	2.337	0.191	-0.81	-0.954	-0.867
	11	1959	3.197	2.457	1.85	2.501	1.194	-0.674	-0.797	-0.318
	12	1960	3.103	2.43	3.369	2.968	0.928	-0.742	1.948	1.239

SPEI cont.

- Calculation:
 - Comparing the cumulative distribution function of monthly precipitation minus monthly potential evapotranspiration against a fitted probability distribution
- Data that goes back to $1901? \rightarrow$ calculated using historical climate data
 - Index can be estimated for earlier periods by using global gridded climate datasets and statistical modeling techniques
 - Reanalysis datasets; combining observations from various sources
- Limitations:
 - The availability and quality of climate data may vary across regions and time periods
 - · Data limitations in sparsely monitored regions introduce uncertainty in calculations
 - Certain factors which can influence drought impacts are not directly accounted for

IEM: Dust Storm Warnings

(Iowa Environmental Mesonet of Iowa State University)

[KPSR] PHOENIX ~	This table	e lists other events is	ssued by the selecte	d office for the selec	cted year. Click on th	ne row to selec	t that event.	
Phenomena	Show	10 ~ entries					Cop	by Events to Clipboar
Dust Storm (DS)							Search:	
Significance	ID ↑↓	Product Issued ↑↓	VTEC Issued	Initial Expire	VTEC Expire	Area km**2 ↑↓	Locations	Signature
Warning (W)		0001 00	0001 00	0001 00	0001.00	0.40	D: 17471	
Event Number	1	2021-03- 10T00:20:00Z	2021-03- 10T00:20:00Z	2021-03- 10T01:15:00Z	2021-03- 10T01:15:00Z	248	Pinal [AZ]	AJ
12	2	2021-03-	2021-03-	2021-03-	2021-03-	2619	Imperial [CA]	INS
Event Year		16T01:17:00Z	16T01:17:00Z	16T02:45:00Z	16T02:45:00Z			
2021 ~	3	2021-07- 01T01:31:00Z	2021-07- 01T01:31:00Z	2021-07- 01T02:30:00Z	2021-07- 01T02:30:00Z	4405	La Paz [AZ], Yuma [AZ]	LJH
Q Load Product	4	2021-07- 03T22:25:00Z	2021-07- 03T22:25:00Z	2021-07- 03T23:30:00Z	2021-07- 03T23:06:00Z	3762	Pinal [AZ], Maricopa [AZ]	SDB
	5	2021-07- 04T00:41:00Z	2021-07- 04T00:41:00Z	2021-07- 04T01:45:00Z	2021-07- 04T01:25:00Z	695	Maricopa [AZ], Pinal [AZ]	SDB
	6	2021-07- 04T00:43:00Z	2021-07- 04T00:43:00Z	2021-07- 04T01:45:00Z	2021-07- 04T01:45:00Z	4203	Maricopa [AZ]	SDB

Phoenix, AZ

Dust Storm Warning Data - 1986-2023 🔥 🗈 🙆 File Edit View Insert Format Data Tools Extensions Help

(L) 🖛 😗 🗉

Α	B	С	D	E	* F	G	н	1	J	к	L	м
	DATE				Area km**2	2 Locations		Monsoon/Synoptic	Wind Direction	Wind speed	gusts (mph)	link
	2022-02-15T22	:16:00Z			160	4 Imperial [CA]		Synoptic			50	https://mesonet.a
	2022-02-15T23	:38:00Z			82	5 Imperial [CA]		Synoptic			50	
	2022-06-23T21	:39:00Z			315	0 Maricopa [AZ], Pinal [AZ]		Monsoon		35		https://mesonet.a
	2022-06-23T22	:06:00Z			217	9 Maricopa [AZ], Pinal [AZ]		Monsoon		35		
	2022-06-23T23	:14:00Z			213	6 Maricopa [AZ], Pinal [AZ]		Monsoon		35		
	2022-06-23T23	:43:00Z			376	0 Maricopa [AZ]		Monsoon		35		
	2022-06-26T00	:02:00Z			464	4 Maricopa [AZ], Yuma [AZ]						
	2022-06-26T02	:20:00Z			268	4 La Paz [AZ], Yuma [AZ], Imperial [CA]						
	2022-06-27T00	:07:00Z			427	5 Maricopa [AZ], Pinal [AZ]						
	2022-06-27T02	:01:00Z			484	1 Maricopa [AZ]						
	2022-06-27T03	:04:00Z			983	9 La Paz [AZ], Maricopa [AZ], Yuma [AZ]						
	2022-06-27T03				774	1 La Paz [AZ], Yuma [AZ], Imperial [CA]						
	2022-06-29T21	:55:00Z				0 Maricopa [AZ], Pinal [AZ]						
	2022-06-29T22	:10:00Z				2 Maricopa [AZ], Pinal [AZ]						
	2022-06-30T01	:02:00Z			373	5 La Paz [AZ], Yuma [AZ], Imperial [CA]						
	2022-06-30T01	:57:00Z			432	1 La Paz [AZ], Yuma [AZ], Imperial [CA]						
	2022-07-14T01	:19:00Z				6 Maricopa [AZ], Pinal [AZ]						
	2022-07-18T01				113	0 Pinal [AZ]						
	2022-07-18T02	:53:00Z				0 Maricopa [AZ], Pinal [AZ]						
	2022-07-24T13	:03:00Z				1 Maricopa [AZ], Pinal [AZ]						
	2022-07-25T00	:47:00Z				3 Pinal [AZ], Maricopa [AZ]						
	2022-07-30T23					2 Maricopa [AZ], Pinal [AZ]						
	2022-07-31T00					4 Maricopa [AZ], Pinal [AZ]						
	2022-07-31T21					9 Maricopa [AZ], Pinal [AZ]						
	2022-08-07T05	:45:00Z				4 Maricopa [AZ], Pinal [AZ]						
	2022-08-09T01					4 Imperial [CA]						
	2022-08-09T01					4 Imperial [CA], Riverside [CA]						
	2022-08-12T20					0 Maricopa [AZ], Pinal [AZ]						
	2022-08-12T20					7 Pinal [AZ]						
	2022-08-12T20	:59:00Z			77	5 Maricopa [AZ], Pinal [AZ]						
	2022-08-12T22					5 Maricopa [AZ], Pinal [AZ]						
	2022-08-13T00					4 La Paz [AZ], Yuma [AZ]						
	2022-08-15T00	:22:00Z				3 Pinal [AZ]						
	2022-08-15T01	:35:00Z			306	0 La Paz [AZ], Yuma [AZ]						

+ = Phoenix • Flagstaff •

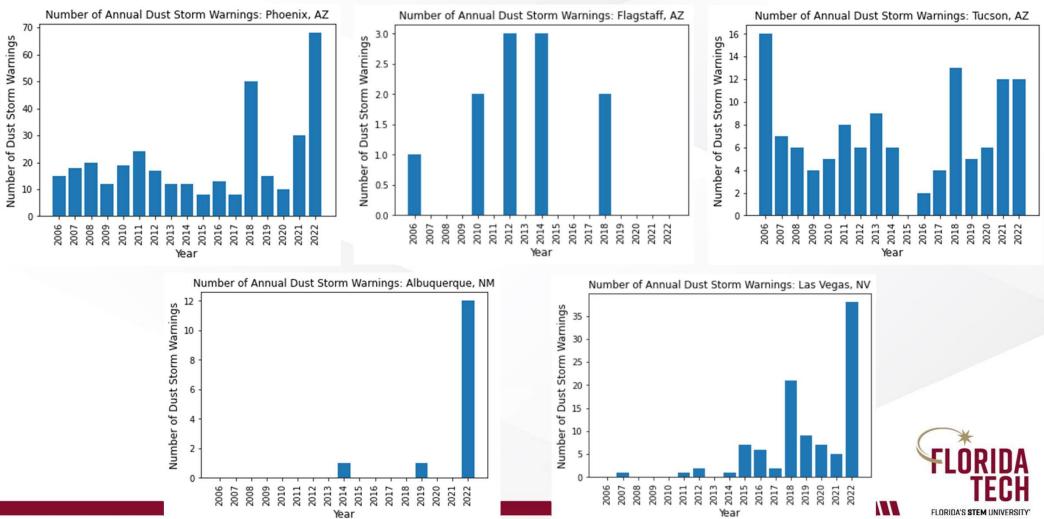
FLORIDA FLORIDA'S STEM UNIVERSITY'

Flagstaff, AZ

Dust Storm Warning Data ☆ 🖘 🐟 File Edit View Insert Format Data Tools Extensions Help

Q. Menus 5 건 등 당 100% * \$ % 및 약 123 Defaul... * - 10 + Β I ÷ ▲ 🍳 田 🗄 · 트 · 브 · ▷ · ▷ · ▷ 프 표 작 · Σ

A	8	C	D	E	F	G	н		C	J.	к	L.	м	N	0	P	Q	R	S	т	U	v	w	x	
	DATE				Area km**2	Locatio	ns	Monso	oon/Sy wir	nd Direction	Wind speed	gusts (mph)	link												
	2018-04-12T09	:07:00Z			6503	4 Chuska M	ountains and Defia	ance Plateau (A	Z], Marble an	nd Glen Cany	ons [AZ], North	neast Plateaus an	d Mesas Hwy 26	4 Northward [AZ], I	ittle Colorado Riv	ver Valley in Coo	conino County [AZ], Little Colora	to River Valley in N	avajo County [AZ], I	ittle Colorado River	Valley in Apache (County [AZ], Nor	theast Plateaus a	and Mesas
	2018-04-18T11	:17:00Z			6503	4 Chuska M	ountains and Defia	ance Plateau (A	Z], Little Cold	orado River V	alley in Navajo	County [AZ], Nor	theast Plateaus	and Mesas South o	Hwy 264 [AZ], M	arble and Glen	Canyons [AZ],	Northeast Platea	us and Mesas Hwy	264 Northward [AZ]	Little Colorado Rive	r Valley in Apache	e County [AZ], Bl	ack Mesa Area (#	AZ], Chinl
	2014-03-15T20	:44:00Z			922	1 Chinle Val	ey [AZ]																		
	2014-03-25T22	:05:00Z			922	1 Chinle Val	ey [AZ]																		
	2014-03-29T21	:02:00Z			922	1 Chinle Val	ey [AZ]																		
	2012-03-07101	:15:00Z			922	1 Chinle Val	ey [AZ]																		
	2012-04-12T0	:08:00Z			922	1 Chinle Val	ey [AZ]																		
	2012-05-24T21	:53:00Z			922	1 Chinle Val	ey [AZ]																		
	2010-05-11705	:27:00Z			2512	5 Little Colo	ado River Valley i	in Navajo Count	ty [AZ], Little	Colorado Riv	er Valley in Cod	conino County (A	Z], Northeast Pla	teaus and Mesas S	outh of Hwy 264 [[AZ]									
	2010-05-23T10	:07:00Z			6222	0 Black Mes	a Area [AZ], North	neast Plateaus a	and Mesas S	outh of Hwy 2	64 [AZ]. Weste	arn Mogollon Rim	[AZ], Northeast I	Plateaus and Mesa	s Hwy 264 Northw	vard [AZ], Little (Colorado River	Valley in Coconii	o County [AZ], Chi	le Valley [AZ]. Chu:	ka Mountains and D	efiance Plateau [/	AZ], Little Colora	do River Valley in	Navajo C
	2006-02-15T17	:57:00Z			6016	6 Little Colo	ado River Valley i	in Navajo Count	ty [AZ], Marb	le and Glen C	anyons [AZ], N	ortheast Plateau	s and Mesas Hw	y 264 Northward [A	Z], Little Colorado	River Valley in	Coconino Cou	nty [AZ], Chinle V	alley [AZ], Chuska I	fountains and Defia	nce Plateay [AZ], No	ortheast Plateaus	and Mesas Sout	h of Hwy 264 [AZ]. Little Co
						Dust S	form Warning Data	☆ 🗈 🖒 at Data Tools Ext													🕤 🕮 🚨 Sha	• 6			

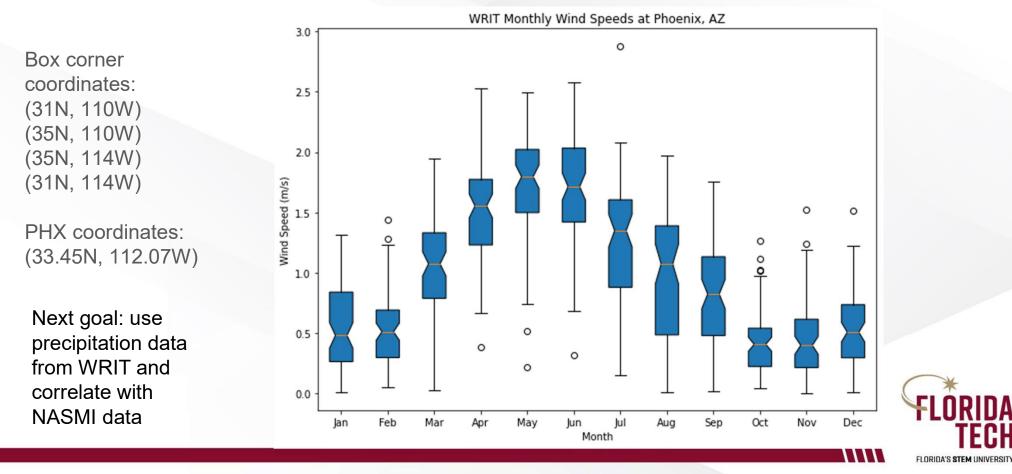

Tucson,	AZ

Warning Data 😒 🖄 d w Insert Format Data 1																• 0	🖳 🐰 She	• 6
2 8 9 100% - 1	2 9 99 03	Defaul • - [10] + 8 I ·	A * B	日三十五十	N + V +	0 1 1	γ-Σ											· ^
8 C	D E	F 0	н. і		× .	- K.	M	. N	0	1 H	0	 8	τ.	Q	· · · ·	- W.	×	¥.
TE		Area km**2 Locations	Monse	on/Sy Wind Directio	Wind speed	gusts (mph)	5nk											
-02-15T21-08:00Z		710 Cochise (AZ)																
-06-23T21-29:00Z		2831 Final (AZ)																
06-27100-18:002 06-29119:43:002		5336 Pima (AZ), Pinal (AZ) 4649 Pima (AZ), Pinal (AZ)															1	-
07-17T02:14:00Z		4253 Pima (AZ)																
07-18T01-49:00Z		2268 Pima (AZ), Pinal (AZ)																
07-25100:04:002		1596 Pima (AZ), Pinal (AZ)																
07-25100:56:002		1356 Pinal (AZ)																
38-07105:43:002		2406 Pima (AZ). Pinai (AZ)																
08-12720-29-00Z 08-15700-33-00Z		1004 Pinal (AZ) 1075 Pinal (AZ)																
10-04700:34:002		7774 Pinal (AZ)																
07-02122 25:00Z		6319 Pinal (AZ), Pima (AZ)																
07-11T01:57:00Z		2509 Pime (AZ), Santa Cruz	AZI															
07-11T02-07-00Z		2944 Pima (AZ). Pinal (AZ)																
07-11703:00:00Z 07-12704:22:00Z		10610 Pima (AZ). Pinai (AZ) 6286 Cochise (AZ). Graham	ATT Canadian (ATT															
-07-12T04-22.00Z -07-12T04:59:00Z		6266 Cochae (AZ), Graham 6266 Cochae (AZ), Graham																
07-13T04:30:002		4401 Pma (AZ), Pmai (AZ)	with our transmission (see)															
07-21T22:01:00Z		775 Pinal (AZ)																
08-28722:53:002		1406 Pima (AZ)																
08-28723-47:00Z		13027 Pima (AZ). Pinal (AZ)																
09-05722-22:00Z 09-05723-42:00Z		2439 Pima (AZ)																
09-05123.42.002 07-12100.28.002		1544 Pima (AZ), Pinai (AZ) 641 Cochise (AZ)																
-07-12T02-06-00Z		2860 Pima (AZ), Santa Cruz	AZ]															
07-12T03:06:00Z		5267 Pima (AZ), Pinal (AZ)	100															
08-16T23.11.00Z		5830 Pima (AZ). Pinal (AZ)																
08-17100:47:002		8386 Pinal (AZ), Pima (AZ)																
-11-07T20:41:00Z -07-23T01:20:00Z		1193 Pinal (AZ) 1137 Pinal (AZ)																
07-25T01-29-002 07-25T01-02-002		1137 Pinal (AZ) 2491 Pinal (AZ), Pima (AZ)																
09-16T20:54:00Z		4509 Pinal [A2], Pima [A2]																
-09-23T21:32:00Z		3148 Pinal (AZ), Pima (AZ)																
09-23T22:51.00Z		2914 Pinal (AZ), Pima (AZ)																
07-05T23-14:00Z		2349 Pima (AZ), Pinal (AZ)																
07-06T00:36:00Z		337 Pinal (AZ)																
07-09T03:58:00Z 07-09T04:20:00Z		2261 Pinal [AZ] 5653 Pima [AZ]																
07-09105-44-002		5545 Pime (AZ)																
07-14T03:04:00Z		786 Pinai (AZ)																
07-17T23:36:00Z		5110 Pirma (AZ)																
08-03T00:37:00Z		5051 Pinal (AZ). Pina (AZ)																
36-11701:38:002 36-13700:42:002		4180 Pinal (AZ), Pima (AZ) 6282 Pinal (AZ), Pima (AZ)																
98-13100.42.002 08-21T01:45:00Z		8262 Pinal (A2), Pima (A2) 8661 Pinal (A2), Pima (A2)																
98-22T22:43:00Z		2042 Pinal (AZ)																
08-23100:44:002		764 Pinal (AZ)																
07-15T01:20:00Z		3237 South Central Pinal Co																
07-16T00:23:00Z		3237 South Central Pinal Co					1											
07-20T01:15:00Z 06-23T23:28:00Z		18328 Upper Gila River and A																
-08-23123-28:00Z -07-19123-46:00Z		8971 Tucson Metro Area Inc 7016 Southeast Pinal Count							40									

🔔 🖅 🕄 🗏 🔍 Share

Number of Annual Dust Storm Warnings by Forecast Office

Web-Based Reanalysis Intercomparison Tools (WRIT)


- Allows examination of sea level pressure, 2m air temperature, 10m meridional winds, 10m zonal winds, and precipitation
- Also includes variables from different atmospheric pressure levels
 - Monthly mean, anomaly, and climatology data can be generated
- Allows for the display of data from various datasets isolated to chosen latitudes and longitudes
- ERA5 Dataset begins in 1948 5th generation of ECMWF atmospheric reanalyses
 - Uses satellites and in-situ observations
 - 31 km horizontal resolution

Slide 49

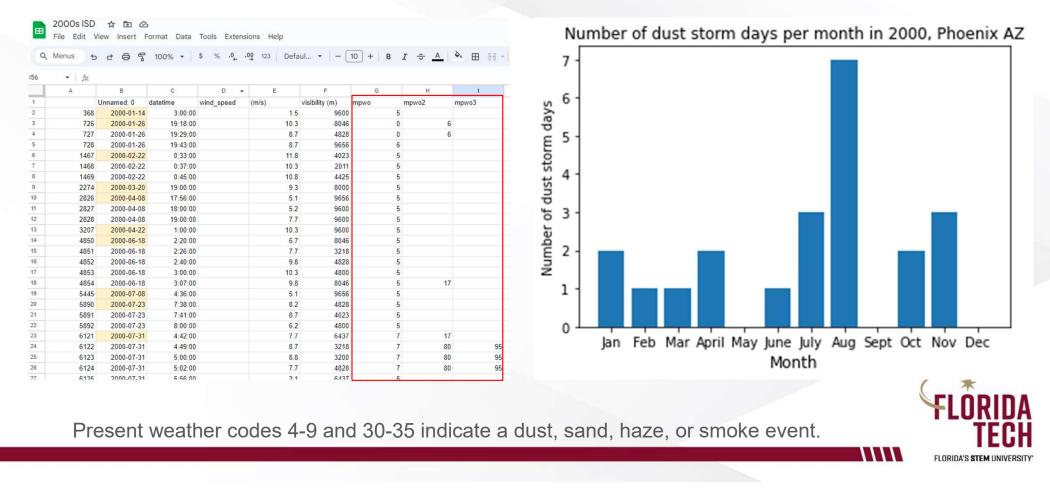
1 CHANGE TO ERA5 Alexis Cole, 6/29/2023

10m Wind Speeds Centered over Phoenix, AZ

Slide 50

2 REDO AT SMALLER SCALE

Alexis Cole, 6/29/2023


ISD - Integrated Surface Dataset

EL ODIDA'S STEL

- Composed of worldwide surface weather obs from 35,000+ stations
- Global hourly and synoptic observations compiled from numerous sources
- Includes numerous parameters observed by each station
 - Wind speed & direction, wind gust, temp, cloud data, present weather, visibility, precipitation amounts for various time periods, etc.

ISD Present Weather Tracking

Current Dataset Issues

- Many of the datasets only go back to ~1950
- The datasets have different temporal resolutions: many need to be upscaled from daily to monthly time scales.
- Event tracking in complicated with such close proximity to the Rocky Mountains
 - Plans to use the North American Extratropical Cyclone Catalogue in this region were hindered by the inability to track low pressure centers near the Rockies
 - Cyclones in this region are often short-lived or have irregular tracks

Works Cited

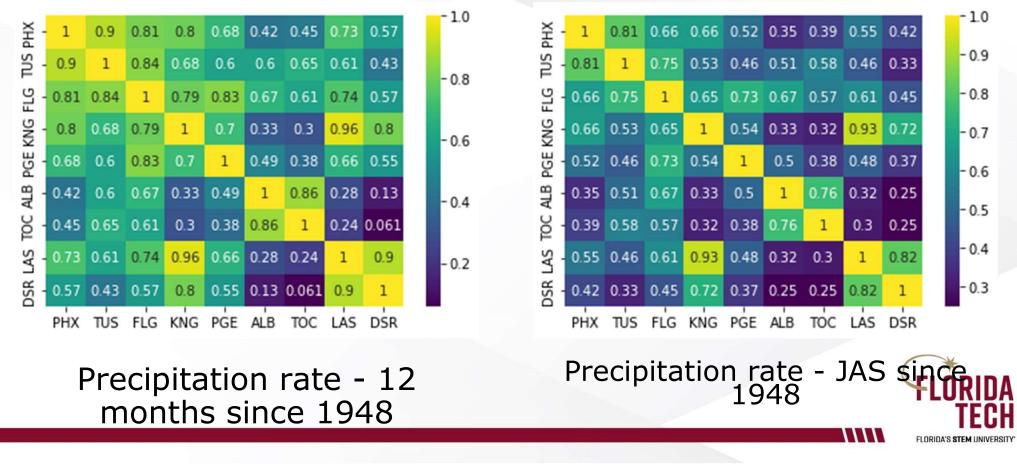
- Kandakji, T., Gill, T. E., & Lee, J. A. (2021). Drought and land use/land cover impact on dust sources in Southern Great Plains and Chihuahuan Desert of the U.S.: Inferring anthropogenic effect. *Science of The Total Environment*, 755, 142461. https://doi.org/10.1016/j.scitotenv.2020.142461
- Li, Y., Mickley, L. J., & Kaplan, J. O. (2021). Response of dust emissions in southwestern North America to 21st century trends in climate, CO₂ fertilization, and land use: Implications for air quality. *Atmospheric Chemistry and Physics*, 21(1), 57–68. https://doi.org/10.5194/acp-21-57-2021
- Yin, D., Nickovic, S., & Sprigg, W. A. (2007). The impact of using different land cover data on wind-blown desert dust modeling results in the southwestern United States. Atmospheric Environment, 41(10), 2214–2224. <u>https://doi.org/10.1016/j.atmosenv.2006.10.061</u>

Database links:

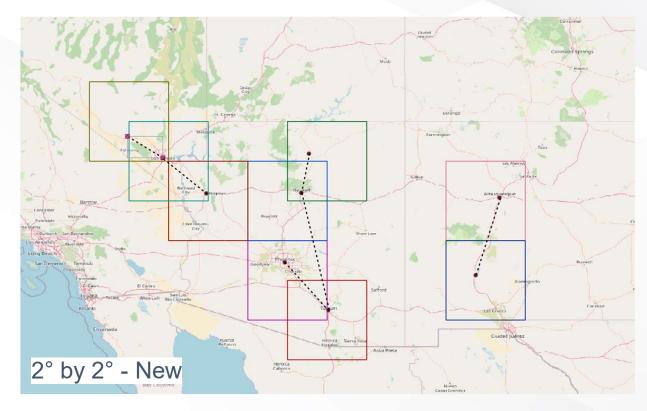
SPEI: https://lcsc.csic.es/

IEM: https://mesonet.agron.iastate.edu/

WRIT: https://psl.noaa.gov/data/atmoswrit/timeseries/

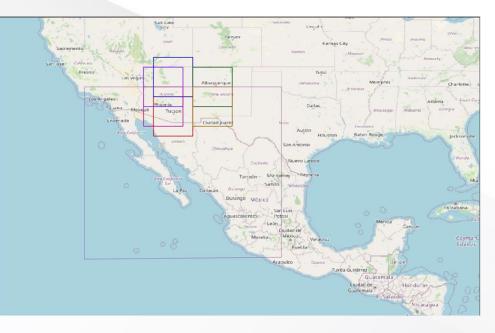

ISD: https://www.ncei.noaa.gov/products/land-based-station/integrated-surface-database

Correlation Heat Map of Precipitation in all months


Correlation Heat Map of Precipitation in Jul, Aug, and Sep

ERA5 Precipitation Rate 2° Lat/Lon Station Correlations

ERA5 Weather Data

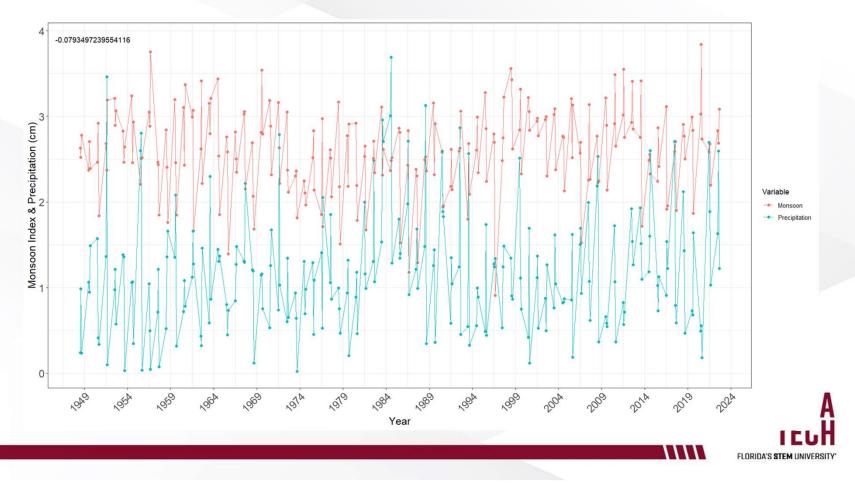

- Cut down each observation box into 2° by 2° lat/lon boxes instead of 4° by 4°
- Linked locations with highest correlation between precipitation rates
 - Note 3 distinctive **FLORIDA** clusters of cities **TECH**

NASMI and Precipitation in the SW U.S.

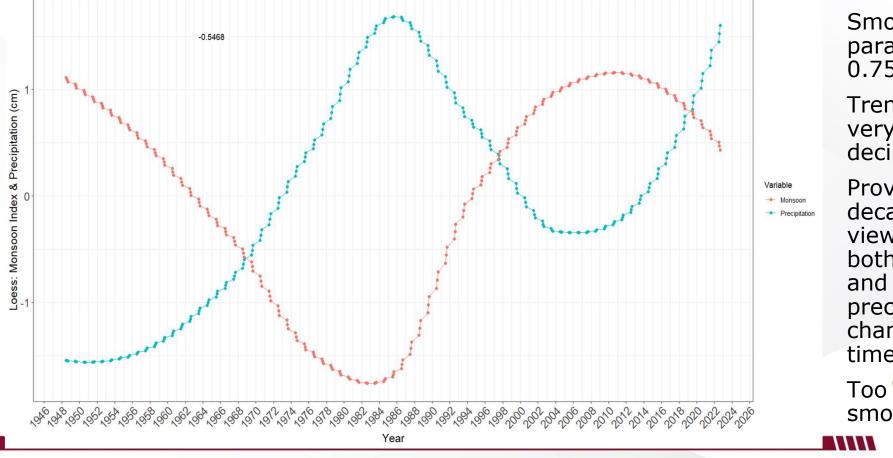
4.5 1.5 1.0 1.0 1.5 3.5 2.0 2.5 3.0 JAS RAW NASMI

RANGE: 17.5 - 35 N, 100 - 120 W

Pearson Correlation: -0.264



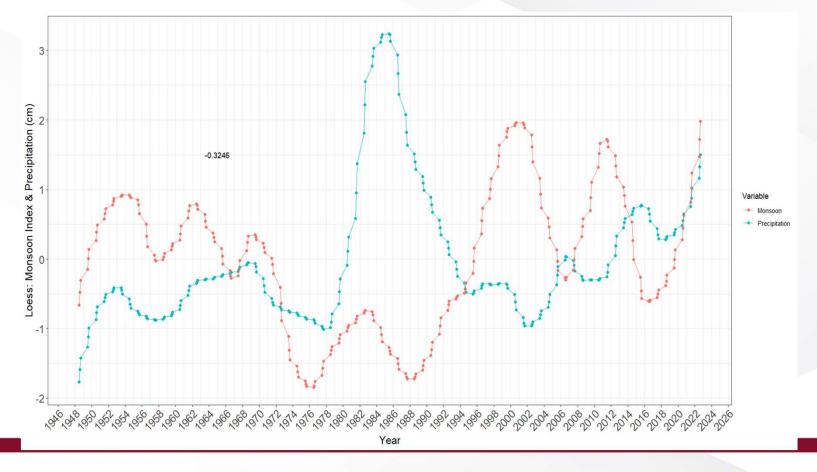
Date	Prate	Year	RawJul	RawAug	RawSep
1/1/48	0.61	1948	2.63	2.52	2.779
2/1/48	0.695	1949	2.374	2.704	2.393
3/1/48	0.368	1950	2.466	2.921	1.841
4/1/48	0.26	1951	2.684	2.372	3.191
5/1/48	0.475	1952	3.211	2.893	3.067
6/1/48	0.982	1953	2.827	2.466	2.643
//1/48	2.87	1954	3.239	2.459	2.936
8/1/48	1.717	1955	2.207	2.51	2.515
9/1/48	2.414	1956	3.049	2.888	3.751
10/1/48	1.085	1957	2.462	2.436	1.849
11/1/48	0.254	1958	2.844	2.404	1.763


NASMI and Precipitation in PHX

Unsmoothed time series of both NASMI and precipitation

Limited relationships can be derived by the naked eye

Smoothed PHX Precipitation and NASMI

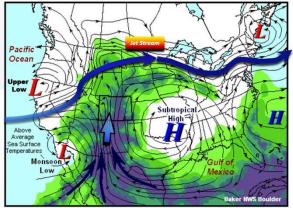

Smoothing parameter: 0.75

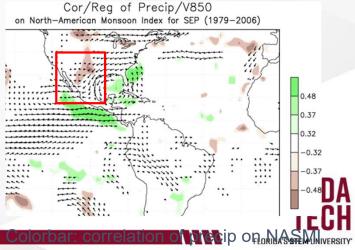
Trends are very easy to decipher

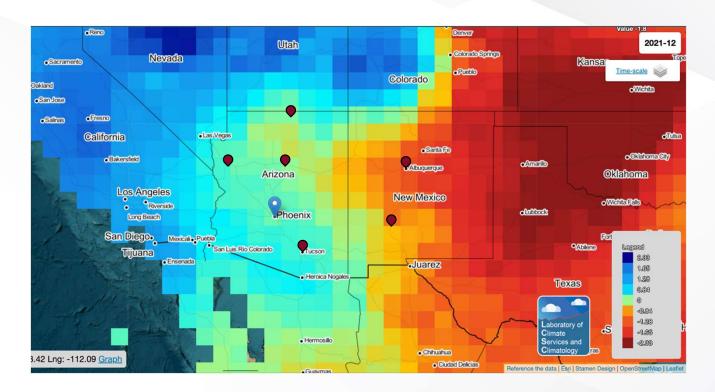
Provides a decadal view of how both NASMI and precipitation change over time Too

FLORIDA'S STEM UNIVERSITY

Smoothed PHX Precipitation and NASMI




Smoothing parameter: 0.2 Still provides a decadal view of NASMI and monthly precipitation, but maintains more detail


North American Summer Monsoon Index and Precipitation

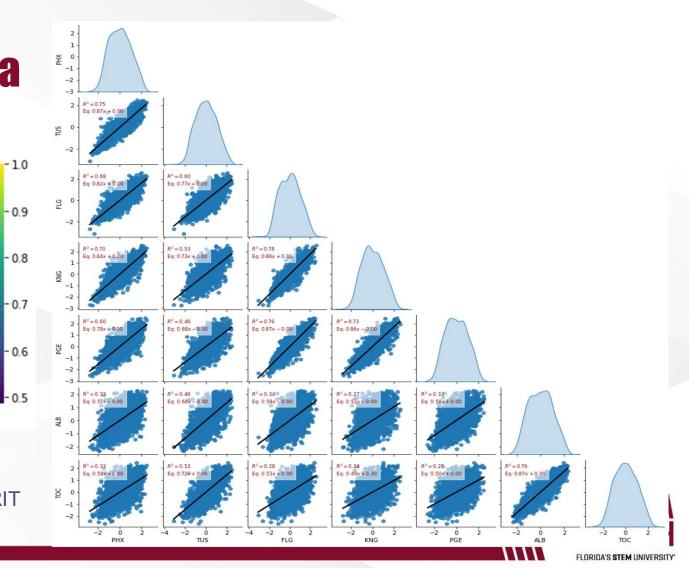
- NASMI: "area-averaged seasonally (JAS) dynamical normalized seasonality (DNS) within the North American monsoon domain (17.5°-35°N,100°-120°W).
- Caveat: The NASMI has a negative correlation with precipitation (possibly due to wind-direction conventions used in calculation)
 - We initially expected a positive correlation (i.e. stronger monsoon index → more precipitation)
 - In reality, weaker (more negative) monsoon index → more precipitation

Return to SPEI Data (Drought Index)

**Using 1 month averaged values (SPEI 1)

Dataset is at a smaller resolution than the WRIT dataset

Can we still form linkages between different variables in select cities without any boundary overlaps?


Provides a gateway into considering evaporation rate as a factor in the modelling proces**FLORIDA**

FLORIDA'S STEM UNIVERSITY

Return to SPEI Data (Drought Index)

ХНА	1	0.87	0.82	0.84	0.78	0.57	0.58
SUT -	0.87	1	0.78	0.73	0.68	0.68	0.72
FLG	0.82	0.78	1	0.88	0.87	0.58	0.53
KNG	0.84	0.73	0.88	1	0.86	0.52	0.49
PGE	0.78	0.68	0.87	0.86	1	0.58	0.5
ALB	0.57	0.68	0.58	0.52	0.58	1	0.87
- TQ	0.58	0.72	0.53	0.49	0.5	0.87	1
	PHX	τύs	FLG	кŃG	PGE	ALB	тос

Maintaining similar relationships between cities as monitored with WRIT precipitation data

Questions Moving Forward

What is the ideal spatial resolution for our forecast model?

- Ideally, we want a city-wide or regional model to provide useful input for constituents...
- But, we are limited by both the spatial and temporal resolution of our input variables?
- Should we continue to use the 4° x 4° box when working with WRIT data?
 - It seems as though there's enough correlation between some cities to link them...
 - But is there too much correlation between Phoenix, Tucson, and Flagstaff that we lose the signal from each individual location?
- How can we align our input data to provide a model output on a shortenough time scale that could be helpful?
 - NASMI varies at a much longer time scale than other factors like wind or precipitation...
 - How can we combine the influence of climatic variables with short term weather variables to produce an effective model?

ELODIDA'S STEM LIN

Next Steps...

- Analyze the Dry Microburst Index using information from the WRIT ERA5 database
- Evaluate evaporation rate (also available on WRIT ERA5 database) and connect to precipitation, drought, and dust storm frequency
- Dive into the Integrated Surface Dataset

Needed variables: Specific humidity (500 and 700 mb), temperature (500 and 700 mb), and heights (500 and 700 mb)

Dry Microburst Index (DMI)

DMI = $\Gamma + (T - T_d)_{700} - (T - T_d)_{500}$

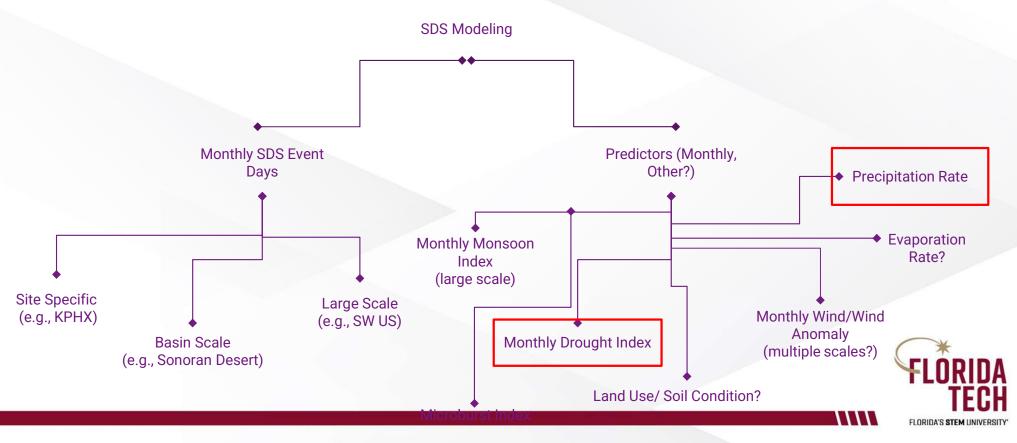
- Γ = temperature lapse rate (°C km⁻¹) from 700 to 500 mb
- T = temperature (°C)
- $T_d = dew point temperature (°C)$
- Dry microbursts may occur when the DMI
 > 6 (Ellrod et al 2000)

FLORIDA'S STEM UNI

Works Cited

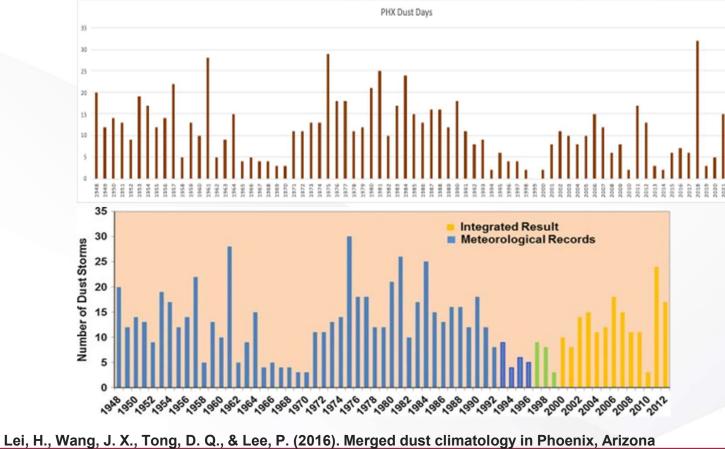
NASMI data and information: <u>http://lijianping.cn/dct/page/65580</u>

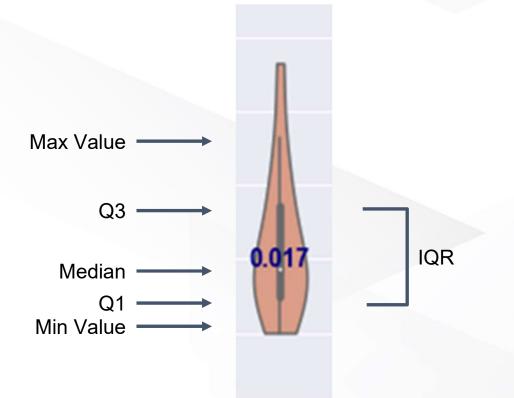
North American Monsoon: <u>https://journals-ametsoc-</u> <u>org.ezaccess.libraries.psu.edu/view/journals/bams/78/10/1520-</u> 0477 1997 078 2197 tnam 2 0 co 2.xml?tab body=pdf


NAM and global warming: <u>https://journals-ametsoc-</u> org.ezaccess.libraries.psu.edu/view/journals/clim/33/22/jcliD200189.xml

DMI: <u>https://www.star.nesdis.noaa.gov/star/documents/bios/Pryor_K/spcpres.pdf</u>

Current Research Course

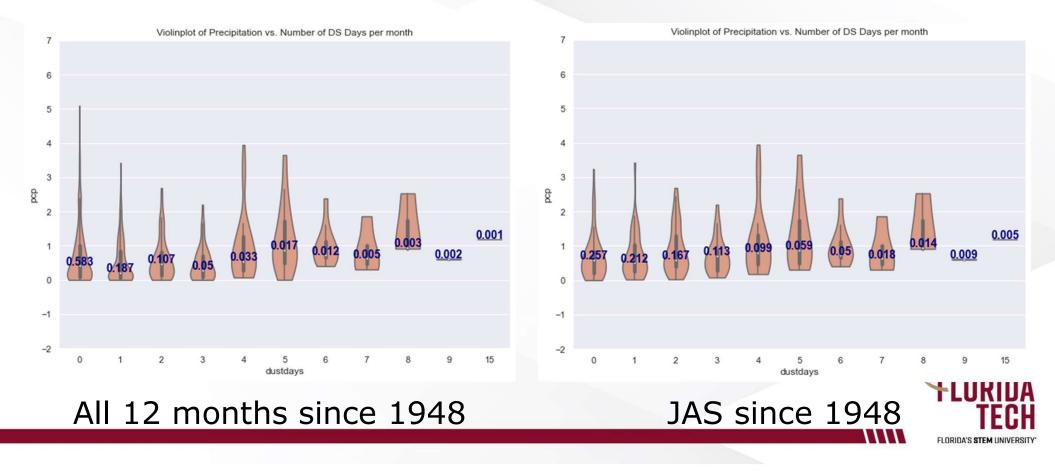

Can we model sand/dust storm (SDS) monthly frequency?

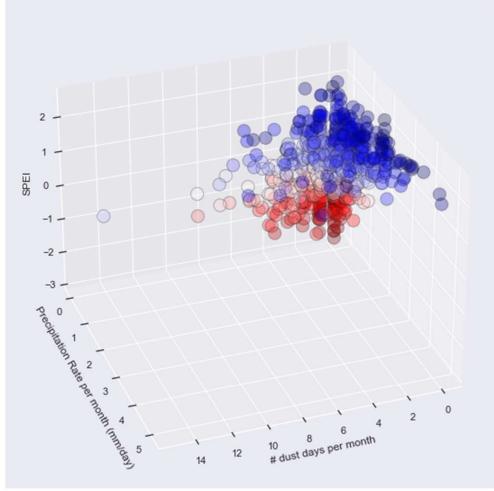

PHX Dust Days

Dust Days from Dr. L's processing compared to results from Lei et al. (2016)

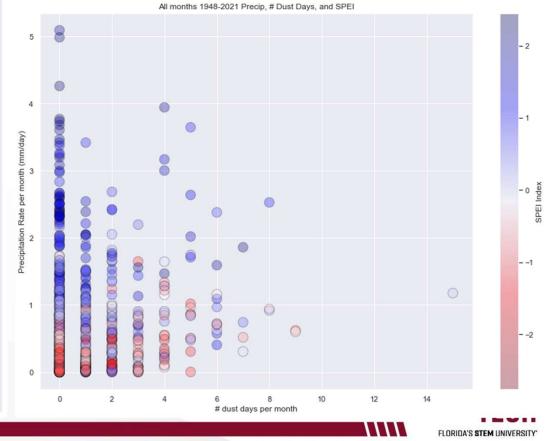
FLORIDA'S STEM UNIVERSITY

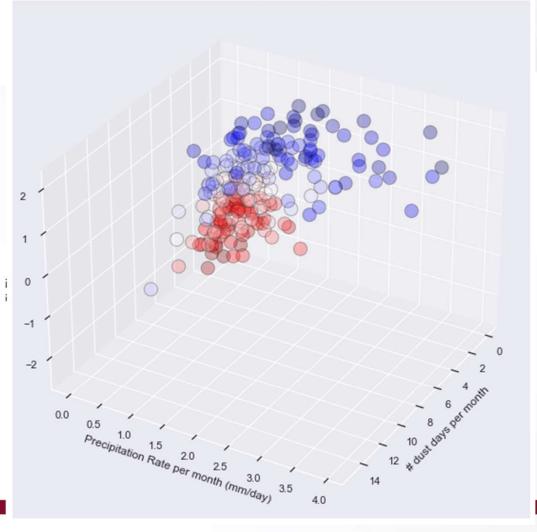
Understanding a Violinplot



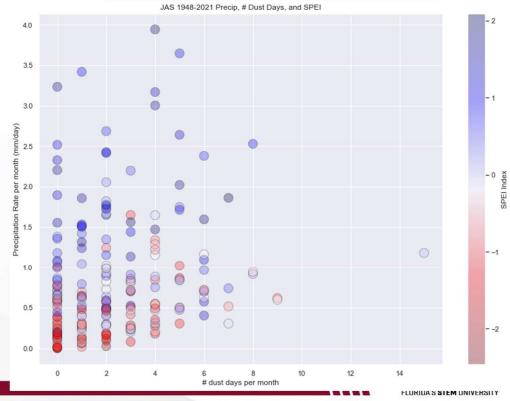

Orange shape represents the frequency, which is proportional to the density plot width.

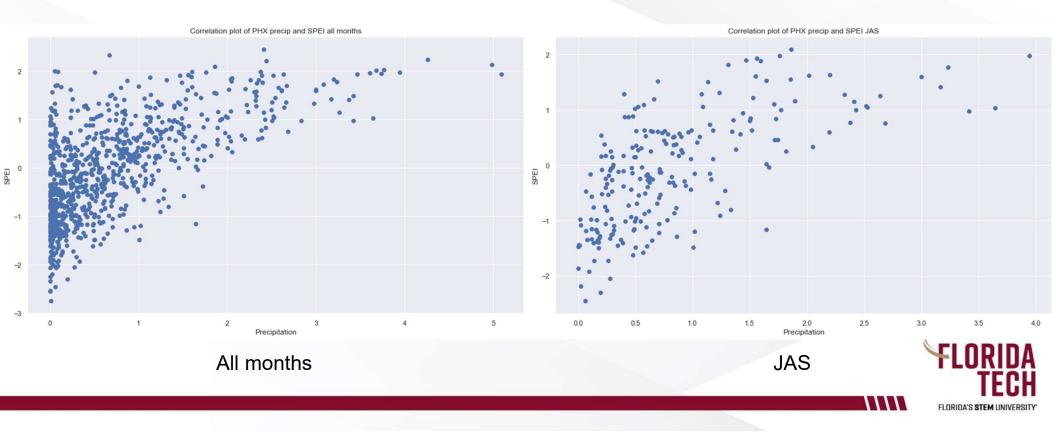
Blue value represents the percentage of x-axis category values out of the total sample size

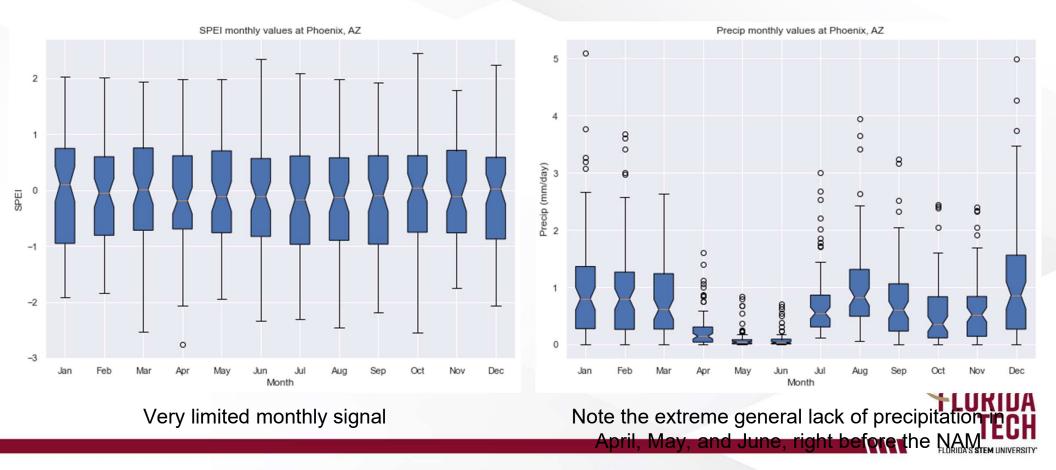

Days With Dust Reports and Respective Precipitation PHX

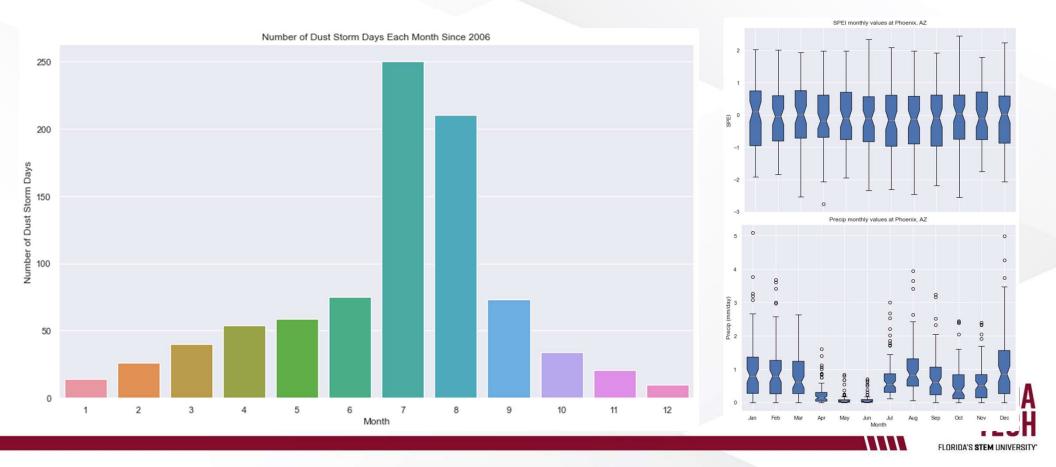


All months 1948-2021 Precip, # Dust Days, and SPEI

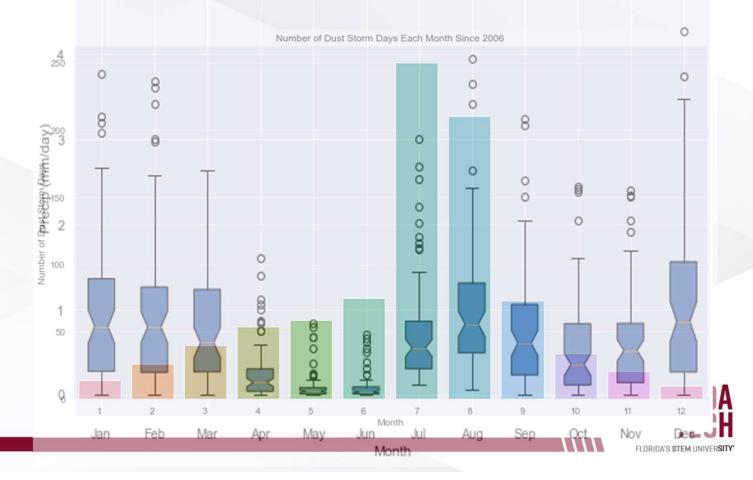

All Months Precipitation, Dust Days per Month, and SPEI (1948-2021) - Phoenix

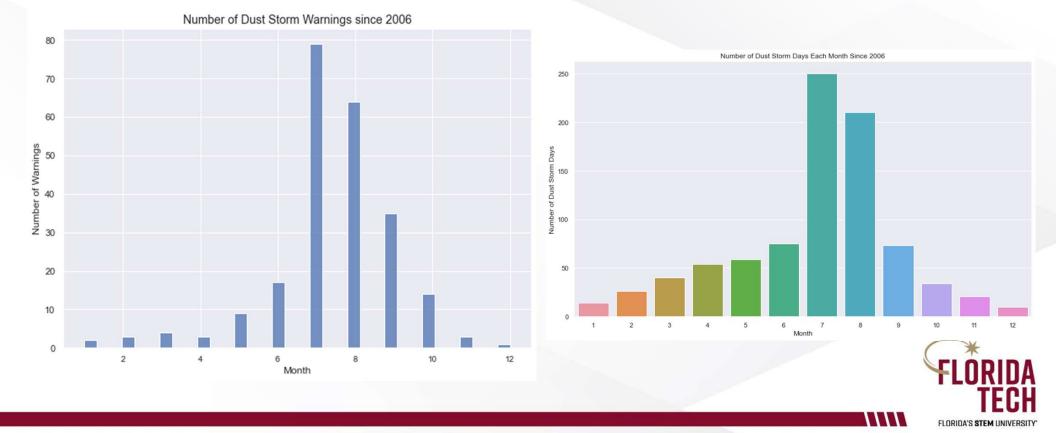

JAS 1948-2021 Precip, # Dust Days, and SPEI


JAS Precipitation, Dust Days per Month, and SPEI (1948-2021) - Phoenix


SPEI vs. Precipitation - A Simplified Look at PHX

Single Variable Analyses at PHX


ISD Total Dust Event Days for PHX


Precip monthly values at Phoenix, AZ

ISD Monthly Dust Event Days & Precipitation for PHX

- Association not a simple function of precipitation.
- Monsoon season peak in precipitation associated with dust peak, but dust events peak in July, not August.
- Winter precipitation peak not well associated with dust event frequency.

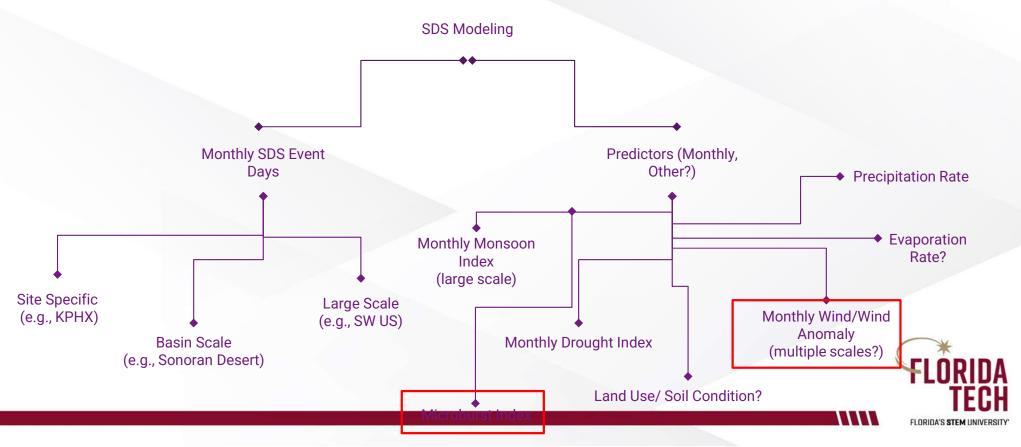
Do Dust Storm Warnings Align with Dust Reports in PHX?

Where Do We Go From Here?

- Process and evaluate monthly dust events for remaining sites in SW US
 - Evaluate site to site variability
- Continue evaluation of potential predictors for number of monthly dust storms for the period of 1948-2022
 - Microburst index, wind speed, etc.
 - Evaluate site to site variability
 - Usage of raw values or anomalies?
- Set up a modeling framework for predicting dust event counts

References

Desert Dust in the Global System: https://link.springer.com/content/pdf/10.1007/3-540-32355-4.pdf

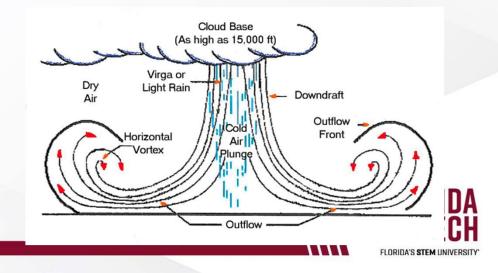

ERA5 Precipitation Data: https://reanalyses.org/atmosphere/web-based-reanalysisintercomparison-tools-writ

SPEI Data: https://lcsc.csic.es/

Current Research Course

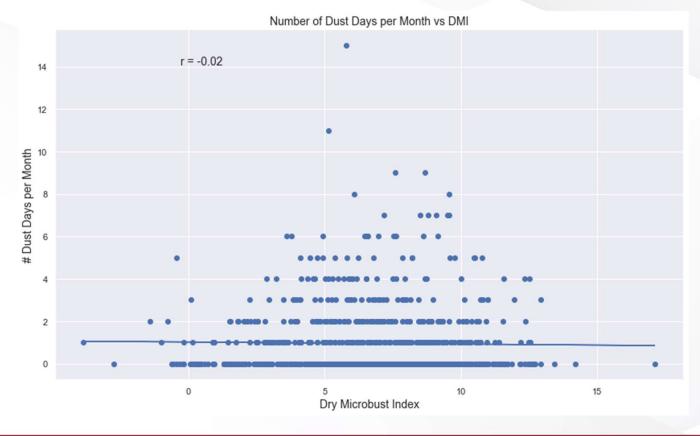
Can we model sand/dust storm (SDS) monthly frequency?

Microburst Index


Dry Microburst Index (DMI)

 $DMI = \Gamma + (T - T_d)_{700} - (T - T_d)_{500}$

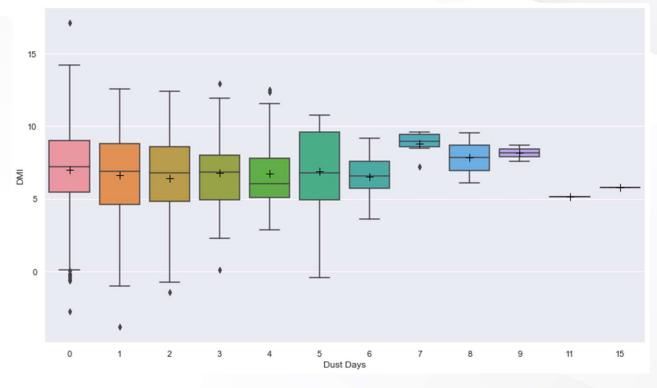
- Γ = temperature lapse rate (°C km⁻¹) from 700 to 500 mb
- T = temperature (°C)
- $T_d = dew point temperature (°C)$
- Dry microbursts may occur when the DMI
 > 6 (Ellrod et al 2000)



- Microbursts are strong downdrafts that cause an outflow of strong winds at or near the surface
- <u>Dry</u> microbursts are common in the American Southwest and exhibit little to no precipitation during the outflow period
- Often associated with virga
- Occur in a convectively unstable environment with a deep dry boundary layer, where precipitation evaporates and cools the air, thus causing negative buoyancy.

(Rose, 2016)

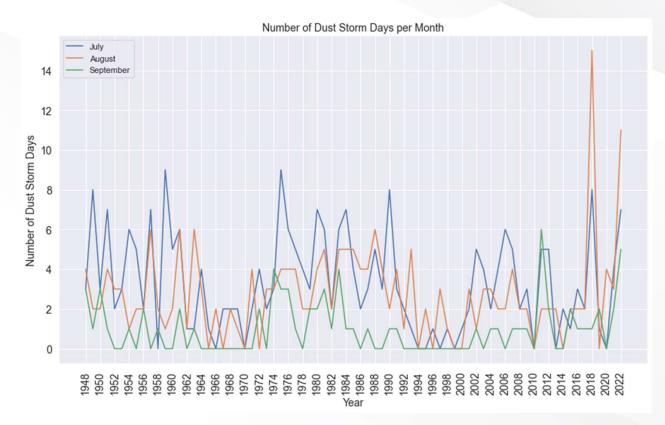
Dust Frequency and Dry Microburst Index



Not a strong correlation visible by the naked eye

"Pyramid" shape appears, making it tricky to draw conclusions

Dust Frequency and Dry Microburst Index

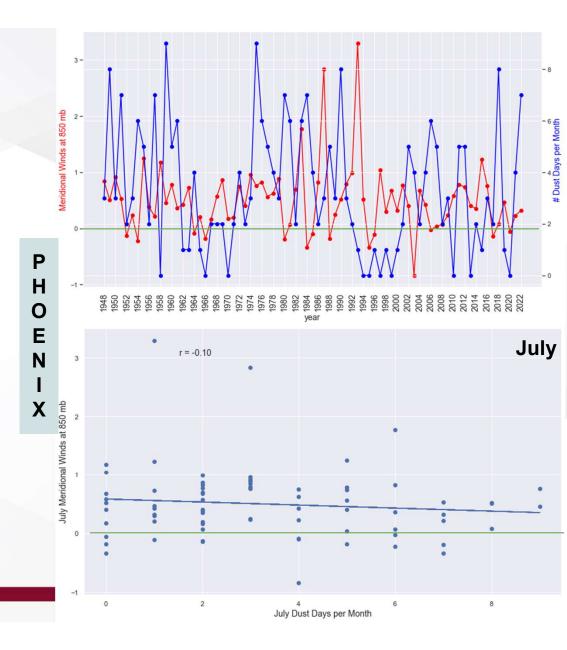


Categories of 2 and 7 events per month have lowest probability of false rejection Even when showing mean and spread values, we cannot derive any clear relationships between the DMI and dust storm frequency beyond a slight increase.

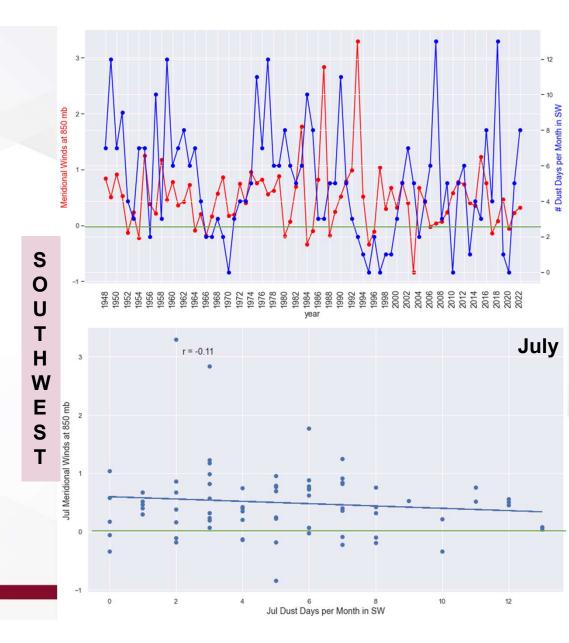
ANOVA p-value between DMI categorized by dust day frequency: 0.5377

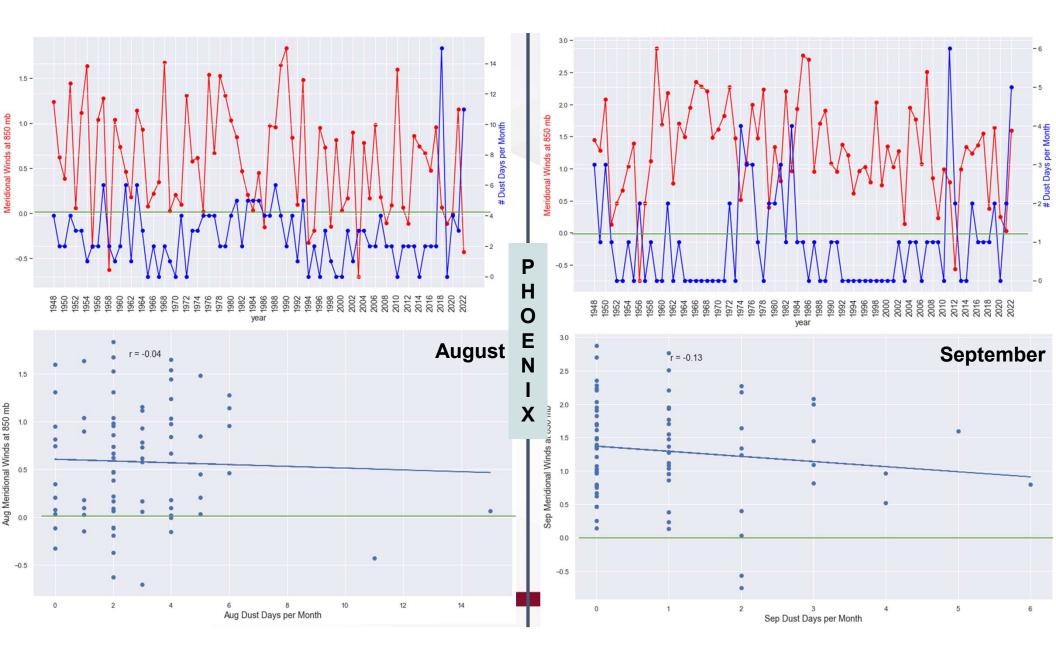
Notably: DMI is valuable on a day-to-day basis, so the signal may be averaged public at a monthly timescale. Stillech could be a useful parameter

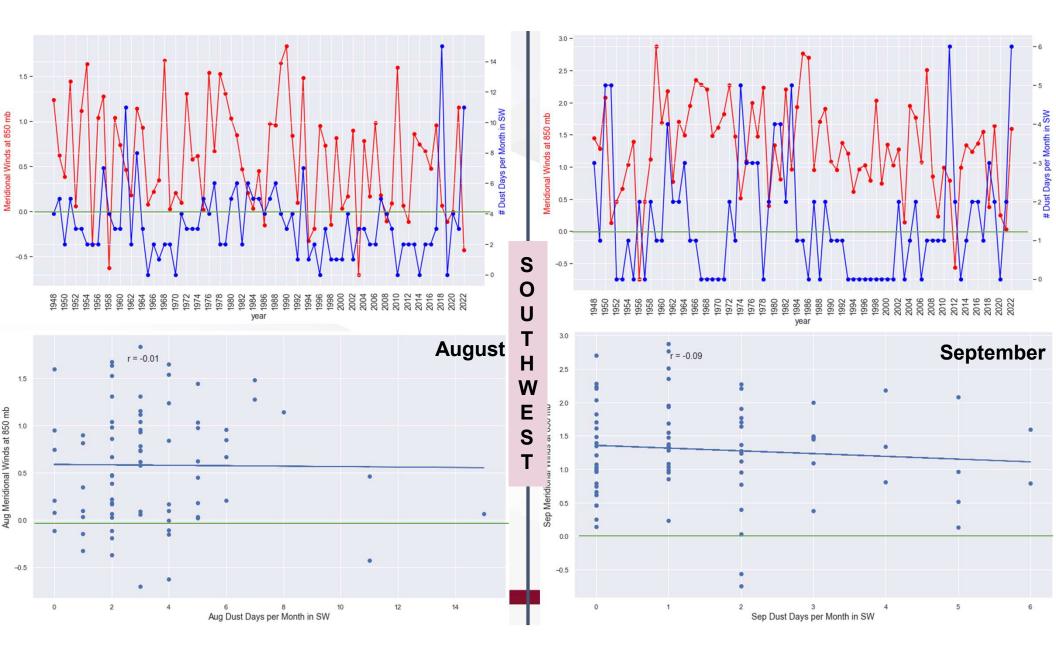
Dust Storm Frequency During Monsoon Season


Breakdown of dust and sandstorm frequency in the Southwest by summer monsoon month

Note the spike from 1970-1990 and the jump once again in recent years

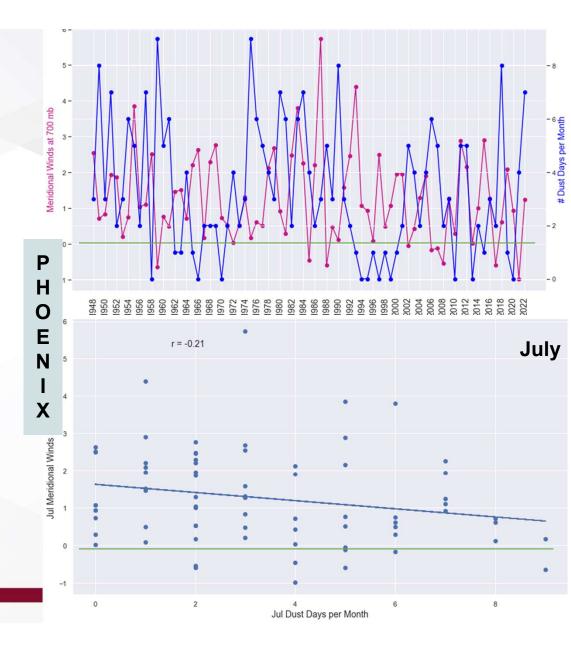

Phoenix <u>850mb meridional</u> winds and dust storm frequency at a monthly time scale:

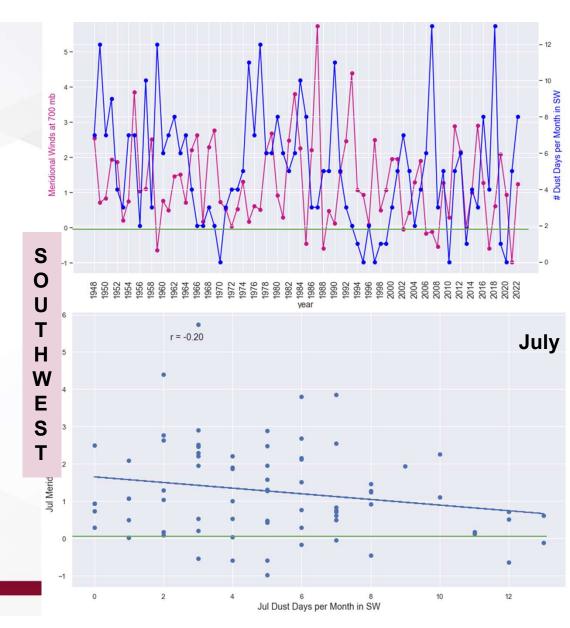

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "v" component of the wind, or the North-South flow at 850 mb over Phoenix.

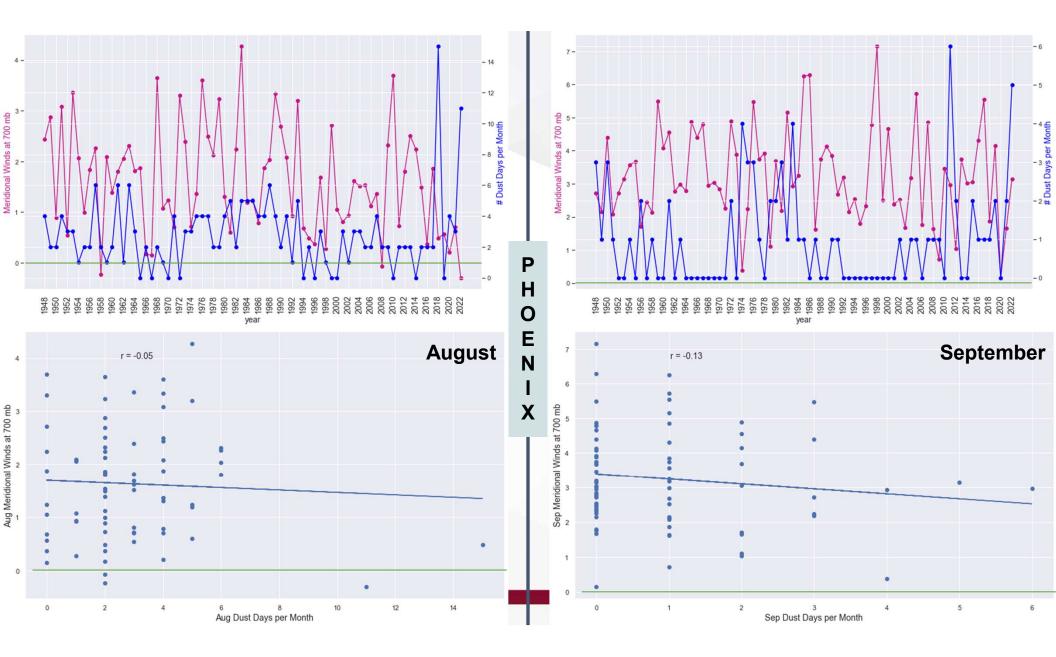


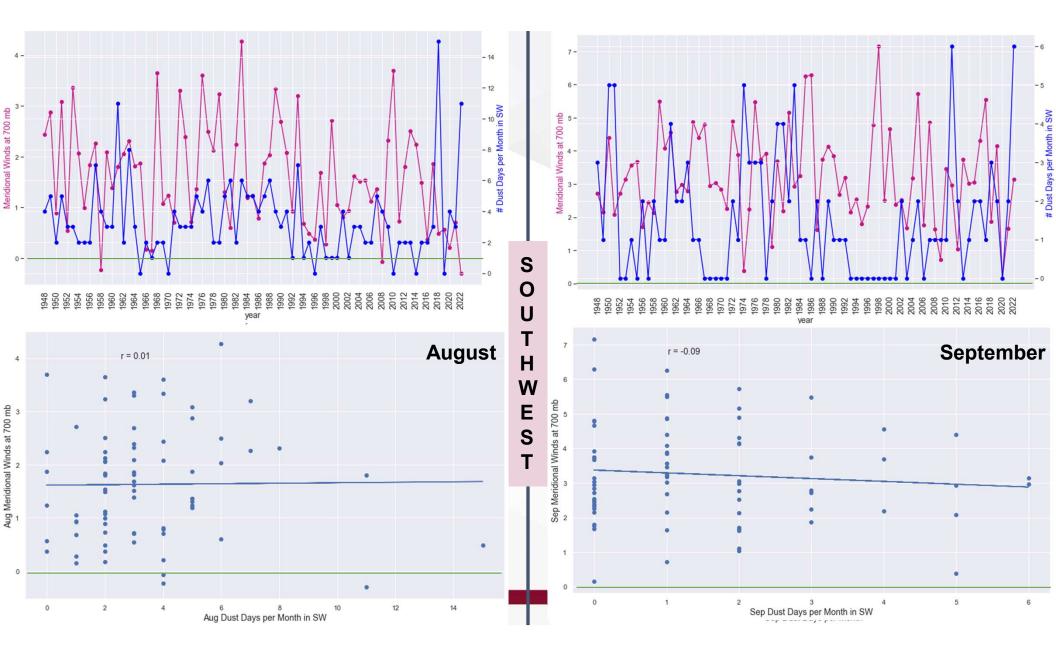
Phoenix <u>850mb meridional</u> winds and dust storm frequency at a monthly time scale:

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "v" component of the wind, or the North-South flow at 850 mb over Phoenix.
- Uses dust storm information compiled from Phoenix, Tucson, Albuquerque, and Las Vegas



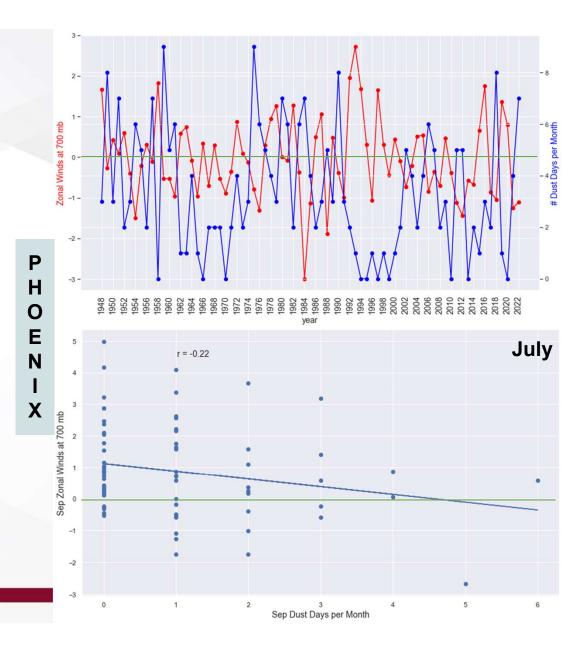

Phoenix <u>700mb meridional</u> winds and dust storm frequency at a monthly time scale:

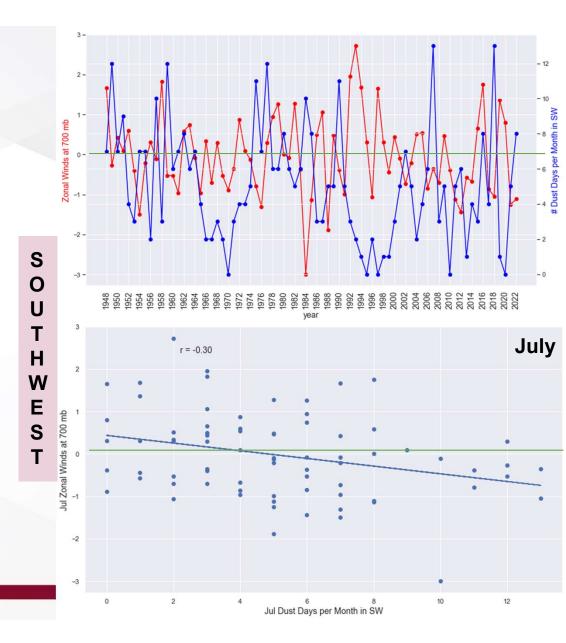

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "v" component of the wind, or the North-South flow at 700 mb over Phoenix.

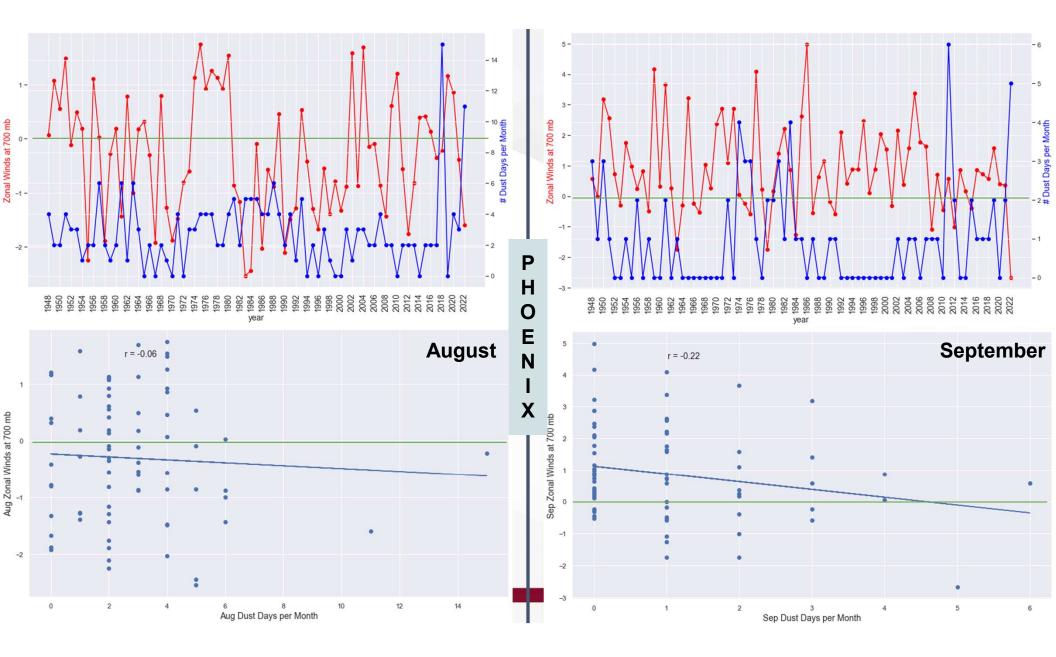


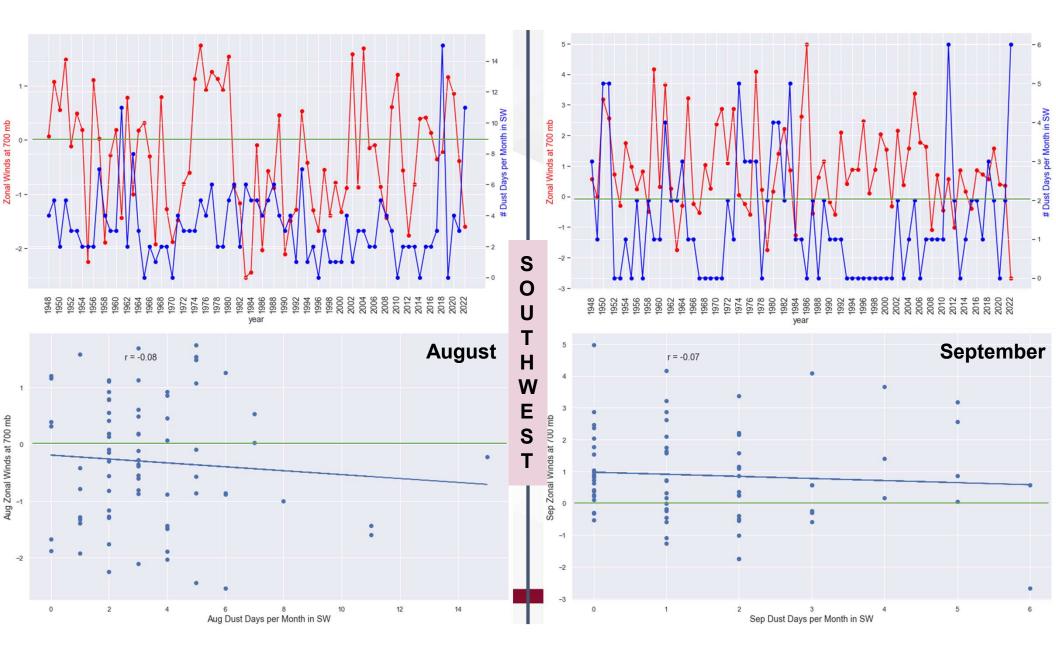
Phoenix <u>700mb meridional</u> winds and dust storm frequency at a monthly time scale:

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "v" component of the wind, or the North-South flow at 700 mb over Phoenix.
- Uses dust storm information compiled from Phoenix, Tucson, Albuquerque, and Las Vegas



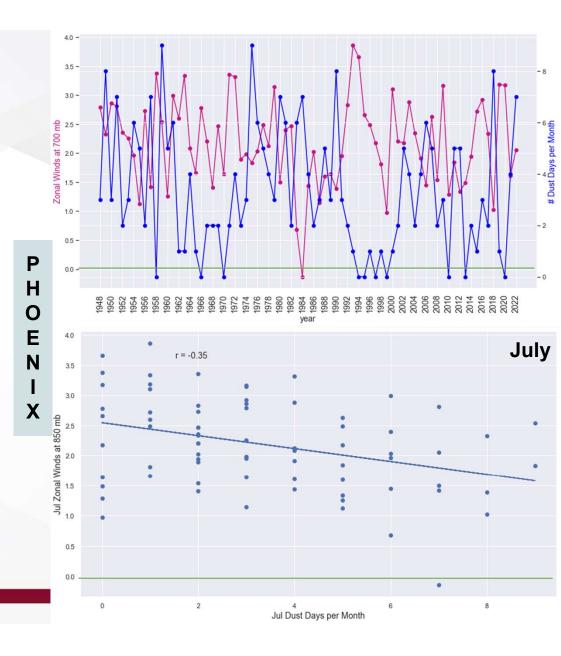

Phoenix <u>700mb zonal</u> winds and dust storm frequency at a monthly time scale:

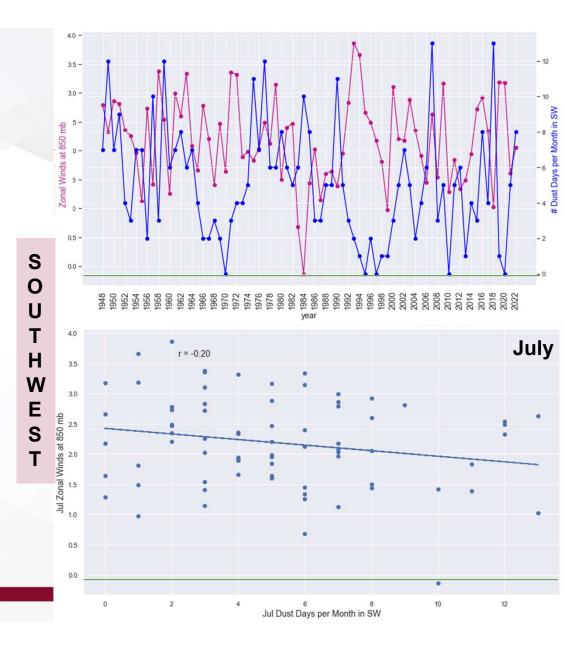

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "u" component of the wind, or the East-West flow at 700 mb over Phoenix.

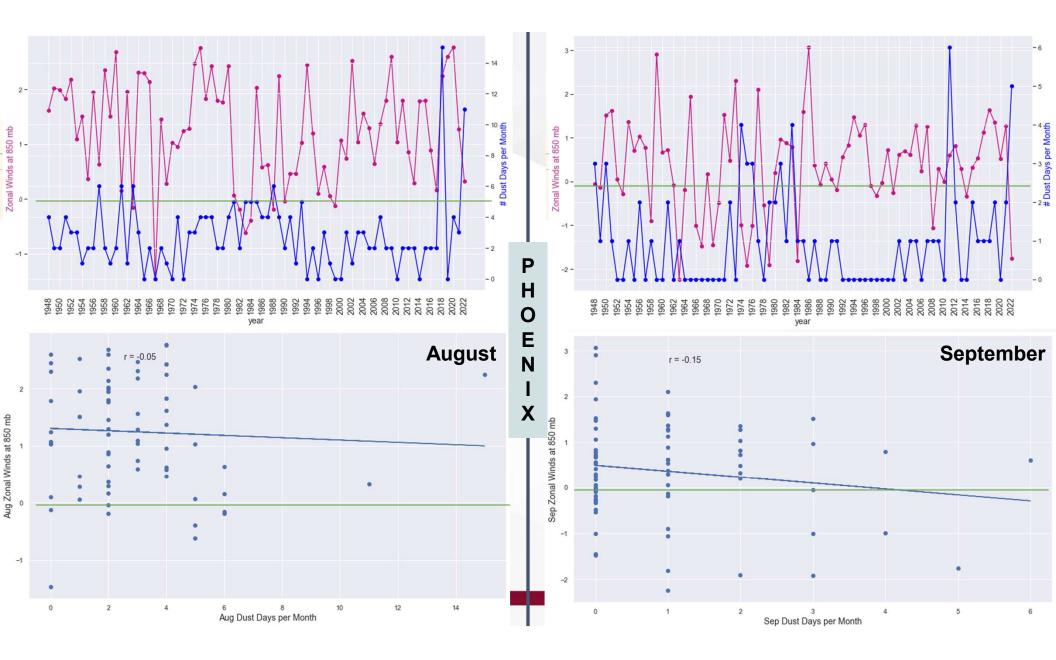


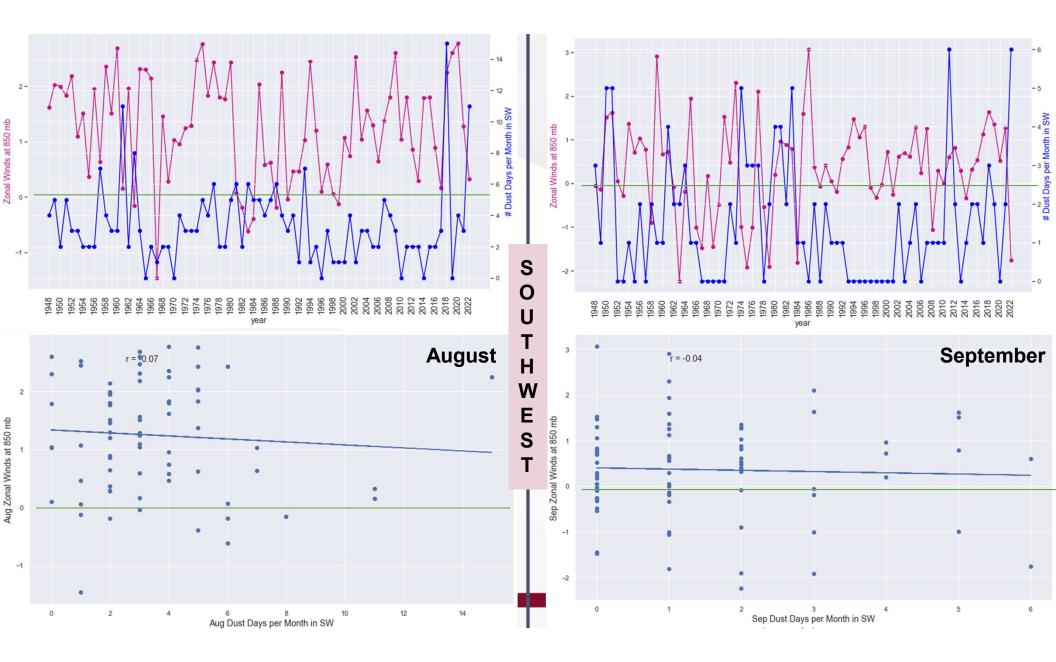
SW US <u>700mb zonal</u> winds and dust storm frequency at a monthly time scale:

- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "u" component of the wind, or the East-West flow at 700 mb over Phoenix.
- Uses dust storm information compiled from Phoenix, Tucson, Albuquerque, and Las Vegas



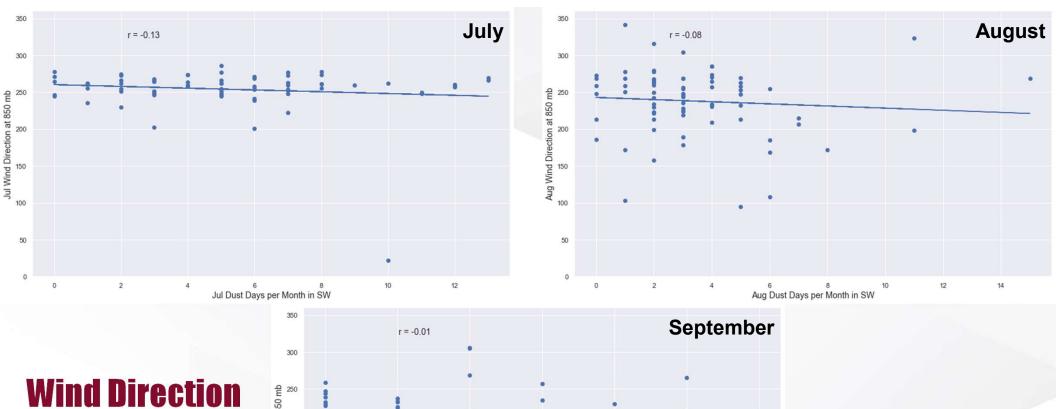

Phoenix <u>850mb zonal</u> winds and dust storm frequency at a monthly time scale:


- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "u" component of the wind, or the East-West flow at 850 mb over Phoenix.

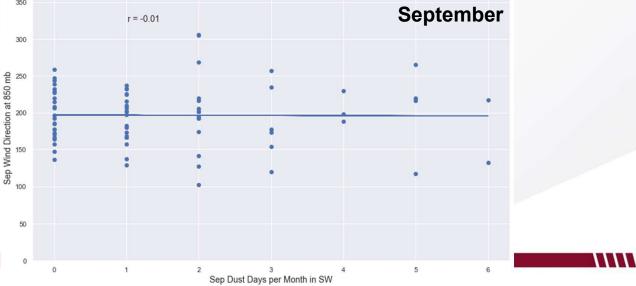


SW US <u>850mb zonal</u> winds and dust storm frequency at a monthly time scale:

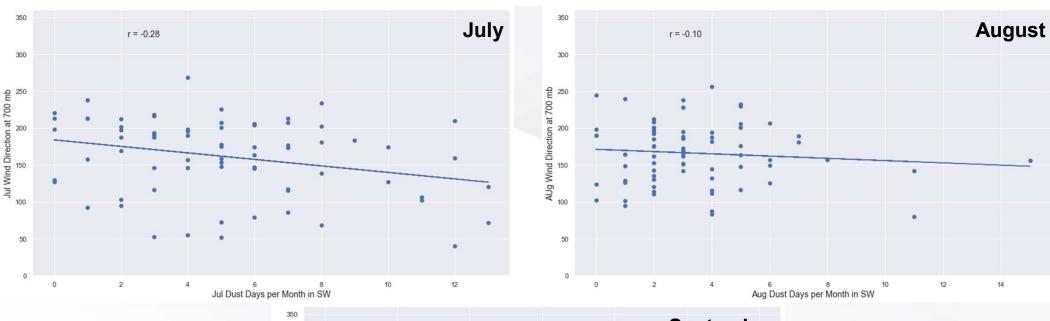
- Plotted separately for July, August, and September
- Time series and correlation plots are both included
- Examines the "u" component of the wind, or the East-West flow at 850 mb.
- Uses dust storm information compiled from Phoenix, Tucson, Albuquerque, and Las Vegas

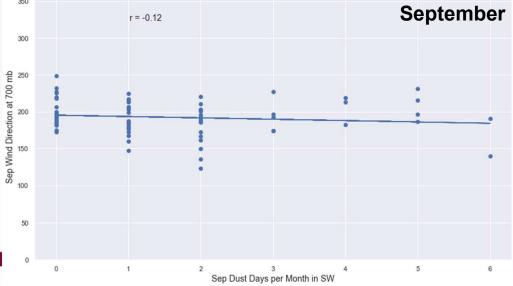


Issues With the Use of Wind Components


The "dust storm" patterns are defined by direction of the flow which is a combination of the the two wind components.

In order to examine the importance of flow direction, we can use the wind components to find the speed and direction of the wind for each month, then correlate this information with dust storm data


Goal: find which pressure level provides most insight, what speed is ideal, and what direction produces the highest frequency of events per month


Wind Direction and Dust Events at 850 mb

Wind Direction and Dust Events at 700 mb

Note stronger negative correlations than at 850 mb

Southeasterly flow across PHX correlated with greater frequency of SDS events across the Southwest

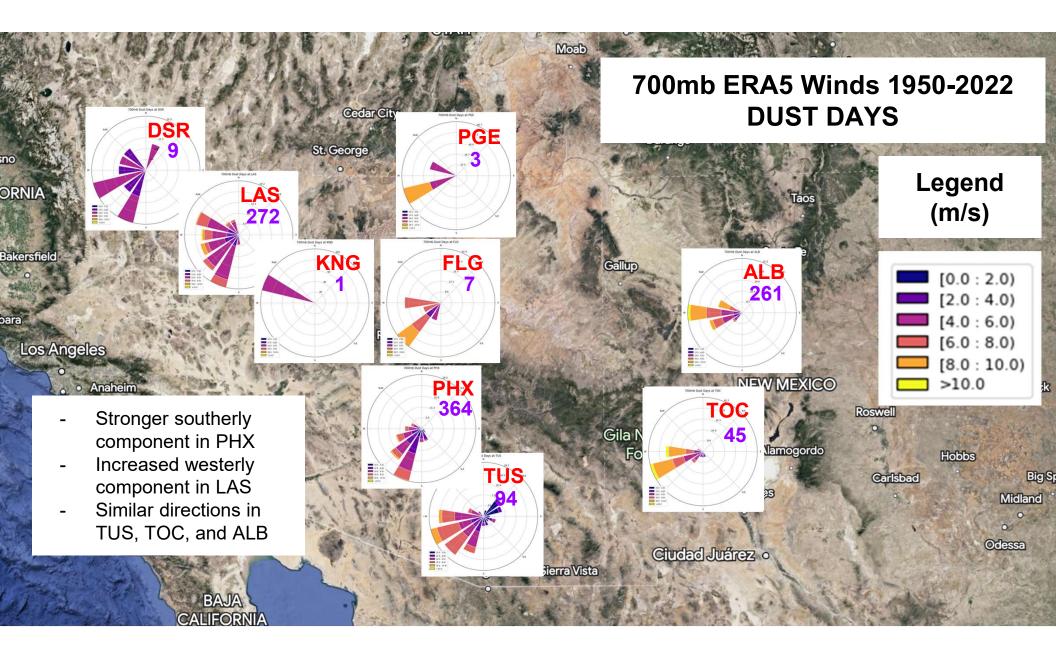
What Comes Next?

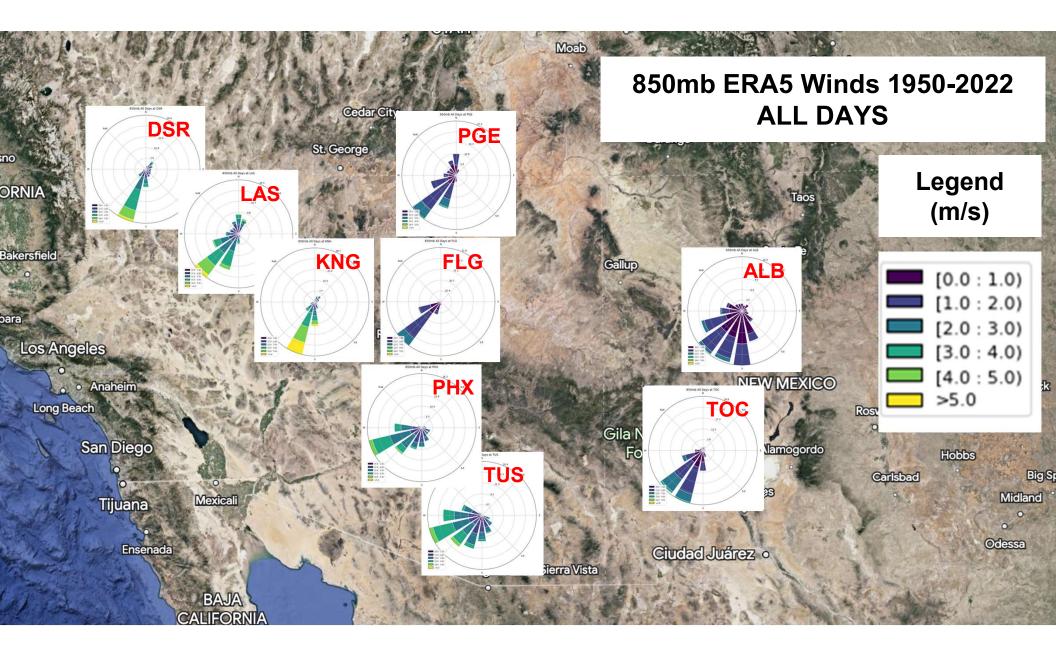
 Continue to explore 700mb, 850mb, and 10m surface winds to find links between wind speed and/or direction and SDS events

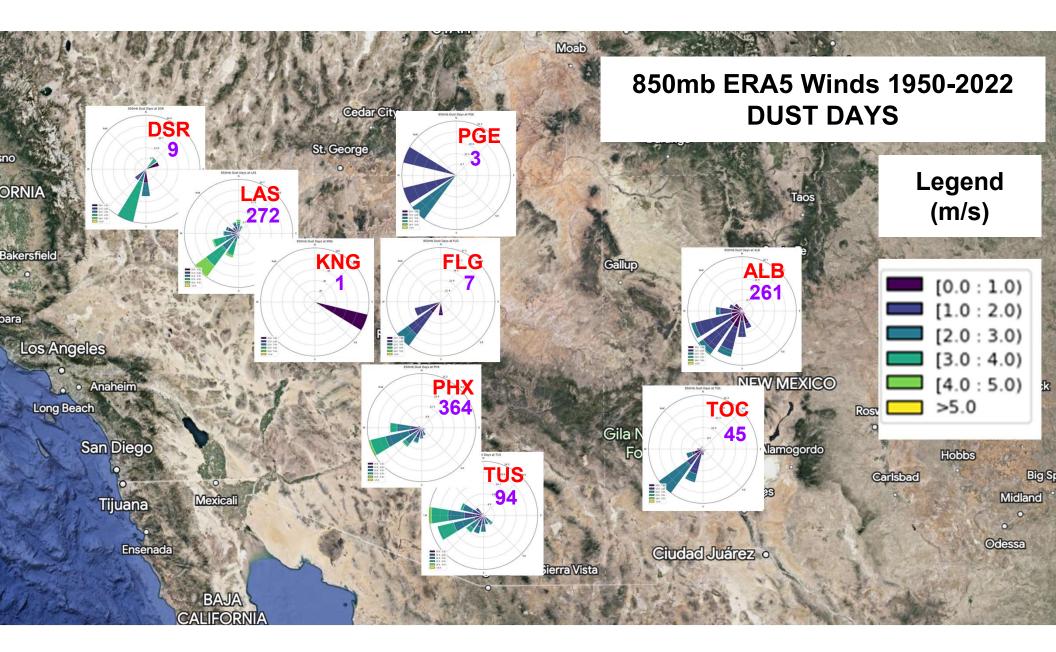
References

Blowing Dust and Dust Storms: One of Arizona's Most Underrated Weather Hazards - NOAA (2016)

Downbursts - Mark A. Rose https://www.weather.gov/ohx/downbursts


ERA5 Data - <u>https://reanalyses.org/atmosphere/web-based-</u> reanalysis-intercomparison-tools-writ




Sandstorms in the Southwestern U.S. Lexi Cole

Week 7

Modeling: Potential Inputs

ERA5: Precipitation, evaporation, 2m temperature, u and v wind components (10m, 850mb, and 700mb), CAPE, CIN, total column water vapor, total totals index

Derived ERA5: Microburst index, wind speed and direction (10m, 850mb, 700mb)

SPEI: Drought index

NASMI: North American Summer Monsoon Index

TerraClimate: Actual evaporation, climate water deficit, potential evapotranspiration, precipitation, runoff, soil moisture, downward surface shortwave radiation, average max temperature, average min temperature, vapor pressure, wind speed, vapor pressure deficit, Palmer Drought Severity Index

Modeling: Potential Input Database Information

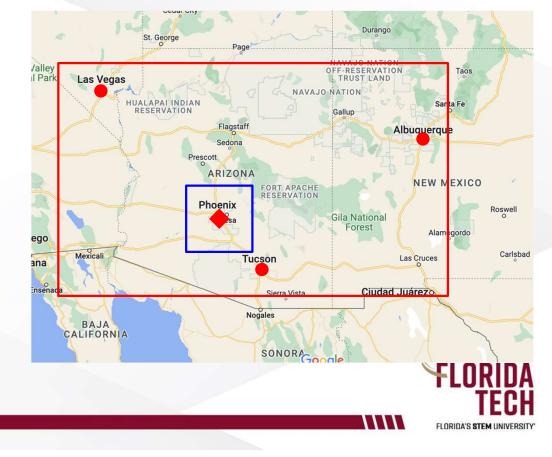
ERA5: 1948-2022 - Monthly averaged data - 30 km spatial resolution - Point data, 2 x 2° spatially averaged data, and (31.5-37°N x 106-116°W) spatially averaged data

Derived ERA5: 1950-2022 - Monthly averaged data - 30 km spatial resolution - Point data, 2 x 2° spatially averaged data, and (31.5-37°N x 106-116°W) spatially averaged data

SPEI: 1901-2021 - Monthly averaged data - 0.5 x 0.5° resolution - "point" data

NASMI: 1948-2022 - Monthly data ONLY in JAS - (17.5-35°N x 100°-120°W) spatially averaged data

TerraClimate: 1958-2020 - Monthly averaged data - 4 km spatial resolution with both direct and derived variables - Point-based data


Issues Encountered with Modeling

What spatial resolution should we use use in this model?

Initially, we modeled using a combination of 2x2° variables and pointwise variables, but the pointwise variables proved to be more significant. This provided a good first look at the spatial issues we may encounter.

We ultimately decided to model for Phoenix using point data and to model for the entire Southwest using spatially averaged predictors and accumulated values of dust day frequency at Albuquerque, Tucson,

Phoenix, and Las Vegas.

